
Programmer's Guide

ps2000apg.en r11

PC Oscilloscopes and MSOs

PicoScope® 2000 Series (A API)

IPicoScope 2000 Series (A API) Programmer's Guide

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

Contents
1 Introduction ... 1

1 Overview ... 1

2 PC requirements ... 2

3 Legal information ... 3

2 Concepts ... 4

1 Driver ... 4

2 General procedure .. 4

3 Voltage ranges ... 5

4 MSO digital data ... 6

5 Triggering .. 7

6 Sampling modes .. 8

1 Block mode ... 9

2 Rapid block mode .. 12

3 ETS (Equivalent Time Sampling) ... 17

4 Streaming mode .. 19

5 Retrieving stored data ... 21

7 Timebases .. 22

8 MSO digital connector ... 23

9 Combining oscilloscopes .. 23

3 API functions .. 24

1 ps2000aBlockReady() – find out if block-mode data ready .. 24

2 ps2000aCloseUnit() – close a scope device .. 25

3 ps2000aDataReady() – find out if post-collection data ready ... 26

4 ps2000aEnumerateUnits() – find all connected oscilloscopes .. 27

5 ps2000aFlashLed() – flash the front-panel LED .. 28

6 ps2000aGetAnalogueOffset() – get allowable offset range ... 29

7 ps2000aGetChannelInformation() – get list of available ranges .. 30

8 ps2000aGetMaxDownSampleRatio() – get aggregation ratio for data .. 31

9 ps2000aGetMaxSegments() – find out how many segments allowed .. 32

10 ps2000aGetNoOfCaptures() – get number of captures available .. 33

11 ps2000aGetNoOfProcessedCaptures() – get number of captures processed 34

12 ps2000aGetStreamingLatestValues() – get streaming data while scope is running 35

13 ps2000aGetTimebase() – find out what timebases are available .. 36

14 ps2000aGetTimebase2() – find out what timebases are available .. 38

15 ps2000aGetTriggerTimeOffset() – find out when trigger occurred (32-bit) 39

16 ps2000aGetTriggerTimeOffset64() – find out when trigger occurred (64-bit) 40

17 ps2000aGetUnitInfo() – get information about scope device .. 41

18 ps2000aGetValues() – get block-mode data with callback .. 43

1 Downsampling modes ... 44

19 ps2000aGetValuesAsync() – get streaming data with callback ... 46

20 ps2000aGetValuesBulk() – get data in rapid block mode ... 47

ContentsII

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

21 ps2000aGetValuesOverlapped() – set up data collection ahead of capture 48

1 Using the GetValuesOverlapped functions .. 49

22 ps2000aGetValuesOverlappedBulk() – set up data collection in rapid block mode 50

23 ps2000aGetValuesTriggerTimeOffsetBulk() – get rapid-block waveform times (32-bit) 51

24 ps2000aGetValuesTriggerTimeOffsetBulk64() – get rapid-block waveform times (64-bit) 53

25 ps2000aHoldOff() – not supported .. 54

26 ps2000aIsReady() – poll driver in block mode ... 55

27 ps2000aIsTriggerOrPulseWidthQualifierEnabled() – get trigger status ... 56

28 ps2000aMaximumValue() – get maximum ADC count in GetValues calls 57

29 ps2000aMemorySegments() – divide scope memory into segments ... 58

30 ps2000aMinimumValue() – get minimum ADC count in GetValues calls 59

31 ps2000aNoOfStreamingValues() – get number of samples in streaming mode 60

32 ps2000aOpenUnit() – open a scope device ... 61

33 ps2000aOpenUnitAsync() – open a scope device without blocking .. 62

34 ps2000aOpenUnitProgress() – check progress of OpenUnit call ... 63

35 ps2000aPingUnit() – check communication with opened device .. 64

36 ps2000aQueryOutputEdgeDetect() – find out if state trigger edge-detection is enabled 65

37 ps2000aRunBlock() – capture in block mode .. 66

38 ps2000aRunStreaming() – capture in streaming mode .. 68

39 ps2000aSetChannel() – set up input channel .. 70

40 ps2000aSetDataBuffer() – register data buffer with driver ... 71

41 ps2000aSetDataBuffers() – register aggregated data buffers with driver 72

42 ps2000aSetDigitalAnalogTriggerOperand() – set up combined analog/digital trigger 73

43 ps2000aSetDigitalPort() – set up digital input ... 74

44 ps2000aSetEts() – set up equivalent-time sampling .. 75

45 ps2000aSetEtsTimeBuffer() – set up 64-bit buffer for ETS timings .. 76

46 ps2000aSetEtsTimeBuffers() – set up 32-bit buffers for ETS timings .. 77

47 ps2000aSetNoOfCaptures() – set number of captures to collect in one run 78

48 ps2000aSetOutputEdgeDetect() – enable or disable state trigger edge-detection 79

49 ps2000aSetPulseWidthDigitalPortProperties() – set pulse-width triggering on digital inputs 80

50 ps2000aSetPulseWidthQualifier() – set up pulse width triggering ... 81

1 PS2000A_PWQ_CONDITIONS structure ... 83

51 ps2000aSetSigGenArbitrary() – set up arbitrary waveform generator ... 84

1 AWG index modes ... 87

2 Calculating deltaPhase .. 88

52 ps2000aSetSigGenBuiltIn() – set up standard signal generator .. 89

53 ps2000aSetSigGenBuiltInV2() – double-precision signal generator setup 92

54 ps2000aSetSigGenPropertiesArbitrary() – change AWG properties .. 93

55 ps2000aSetSigGenPropertiesBuiltIn() – change standard signal generator properties 94

56 ps2000aSetSimpleTrigger() – set up level triggers ... 95

57 ps2000aSetTriggerChannelConditions() – specify which channels to trigger on 96

1 PS2000A_TRIGGER_CONDITIONS structure .. 97

58 ps2000aSetTriggerChannelDirections() – set up signal polarities for triggering 98

59 ps2000aSetTriggerChannelProperties() – set up trigger thresholds ... 99

IIIPicoScope 2000 Series (A API) Programmer's Guide

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

1 PS2000A_TRIGGER_CHANNEL_PROPERTIES structure ... 100

60 ps2000aSetTriggerDelay() – set up post-trigger delay ... 102

61 ps2000aSetTriggerDigitalPortProperties() – set up digital channel trigger directions 103

1 PS2000A_DIGITAL_CHANNEL_DIRECTIONS structure ... 104

62 ps2000aSigGenArbitraryMinMaxValues() – query AWG parameter limits 106

63 ps2000aSigGenFrequencyToPhase() – calculate AWG phase from frequency 107

64 ps2000aSigGenSoftwareControl() – trigger the signal generator .. 108

65 ps2000aStop() – stop data capture ... 109

66 ps2000aStreamingReady() – find out if streaming-mode data ready .. 110

67 Wrapper functions ... 111

4 Further information .. 113

1 Driver status codes .. 113

2 Enumerated types and constants ... 113

3 Numeric data types .. 113

5 Glossary .. 114

Index ... 117

PicoScope 2000 Series (A API) Programmer's Guide 1

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

1 Introduction

1.1 Overview
The PicoScope 2000 Series PC Oscilloscopes from Pico Technology are high-speed real-time measuring
instruments. They obtain their power from the USB port so do not need an additional power supply. With a
built-in arbitrary waveform generator, these scopes contain everything you need in a convenient, portable
unit.

This manual explains how to develop your own programs for collecting and analyzing data from the
PicoScope 2000 Series oscilloscopes. It applies to all devices supported by the ps2000a application
programming interface (API), as listed below:

2-channel 2-channel MSO 4-channel

PicoScope 2206
PicoScope 2206A
PicoScope 2206B
PicoScope 2207

PicoScope 2207A
PicoScope 2207B
PicoScope 2208

PicoScope 2208A
PicoScope 2208B

PicoScope 2205A MSO
PicoScope 2206B MSO
PicoScope 2207B MSO
PicoScope 2208B MSO

PicoScope 2405A
PicoScope 2406B
PicoScope 2407B
PicoScope 2408B

PicoScope
2205 MSO

The Pico Software Development Kit (PicoSDK) is available free of charge from
www.picotech.com/downloads. This download includes support for all PicoScope oscilloscopes including
the ps2000a API described in this manual, as well as the original ps2000 API for older oscilloscopes in the
PicoScope 2000 Series.

Example code is available from repositories under the "picotech" organization on GitHub.

SDK version: 10.6.12

https://www.picotech.com/downloads
https://github.com/picotech

Introduction2

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

1.2 PC requirements
To ensure that your PicoScope 2000 Series PC Oscilloscope operates correctly with the SDK, you must have
a computer with at least the minimum system requirements to run one of the supported operating systems,
as shown in the following table. The performance of the oscilloscope will be better with a more powerful PC,
and will benefit from a multi-core processor.

Item Specification

Operating system
Windows 7, 8 or 10

32-bit or 64-bit

Processor
Memory
Free disk space

As required by Windows

Ports*
USB 2.0 or USB 3.0 port

USB 1.1 port (absolute minimum)

* PicoScope oscilloscopes will operate slowly on a USB 1.1 port. Not recommended.
USB 3.0 connections will run at about the same speed as USB 2.0.

PicoScope 2000 Series (A API) Programmer's Guide 3

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

1.3 Legal information
The material contained in this release is licensed, not sold. Pico Technology Limited grants a licence to the
person who installs this software, subject to the conditions listed below.

Access. The licensee agrees to allow access to this software only to persons who have been informed of
these conditions and agree to abide by them.

Usage. The software in this release is for use only with Pico products or with data collected using Pico
products.

Copyright. Pico Technology Ltd. claims the copyright of, and retains the rights to, all material contained in
this SDK. You may copy and distribute the SDK without restriction, as long as you do not remove any Pico
Technology copyright statements.

Liability. Pico Technology and its agents shall not be liable for any loss, damage or injury, howsoever
caused, related to the use of Pico Technology equipment or software, unless excluded by statute.

Fitness for purpose. As no two applications are the same, Pico Technology cannot guarantee that its
equipment or software is suitable for a given application. It is your responsibility, therefore, to ensure that
the product is suitable for your application.

Mission-critical applications. This software is intended for use on a computer that may be running other
software products. For this reason, one of the conditions of the licence is that it excludes use in mission-
critical applications, for example life support systems.

Viruses. This software was continuously monitored for viruses during production, but you are responsible
for virus-checking the software once it is installed.

Support. If you are dissatisfied with the performance of this software, please contact our technical support
staff, who will try to fix the problem within a reasonable time. If you are still dissatisfied, please return the
product and software to your supplier within 14 days of purchase for a full refund.

Upgrades. We provide upgrades, free of charge, from our web site at www.picotech.com. We reserve the
right to charge for updates or replacements sent out on physical media.

Trademarks. Windows is a trademark or registered trademark of Microsoft Corporation. Pico Technology
Limited and PicoScope are internationally registered trademarks.

Concepts4

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2 Concepts

2.1 Driver

Your application will communicate with a PicoScope 2000 (A API) driver called ps2000a.dll, which is
supplied in 32-bit and 64-bit versions. The driver exports the ps2000a function definitions in standard C
format, but this does not limit you to programming in C. You can use the API with any programming
language that supports standard C calls.

The API driver depends on another DLL, picoipp.dll (which is supplied in 32-bit and 64-bit versions) and

a low-level driver called WinUsb.sys. These are installed by the SDK and configured when you plug the
oscilloscope into each USB port for the first time. Your application does not call these drivers directly.

2.2 General procedure
A typical program for capturing data consists of the following steps:

1. Open the scope unit.
2. Set up the input channels with the required voltage ranges and coupling type.
3. Set up triggering.
4. Start capturing data. (See Sampling modes, where programming is discussed in more detail.)
5. Wait until the scope unit is ready.
6. Copy data to a buffer.
7. Stop capturing data.
8. Close the scope unit.

Many example programs are available on GitHub. These demonstrate how to use the functions of the driver
software in each of the modes available.

https://github.com/picotech

PicoScope 2000 Series (A API) Programmer's Guide 5

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.3 Voltage ranges
Analog input channels
You can set a device input channel to any voltage range from ±20 mV to ±20 V (subject to the device

specification) with ps2000aSetChannel(). Each sample is scaled to 16 bits, and the minimum and

maximum values returned to your application are given by ps2000aMinimumValue() and

ps2000aMaximumValue() as follows:

Function Voltage Value returned

decimal hex

ps2000aMaximumValue() maximum 32 512 7F00

zero 0 0000

ps2000aMinimumValue() minimum –32 512 8100

Example

1. Call ps2000aSetChannel() with

range set to PS2000A_1V.

2. Apply a sine wave input of 500 mV
amplitude to the oscilloscope.

3. Capture some data using the
desired sampling mode.

4. The data will be encoded as shown
opposite.

External trigger input (PicoScope 2206, 2207 and 2208 only)
The external trigger input (marked EXT) is scaled to a 16-bit value as follows:

Voltage Constant Digital value

PS2000A_EXT_MIN_VALUE –32 767

0 V 0

+5 V PS2000A_EXT_MAX_VALUE +32 767

Concepts6

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.4 MSO digital data
This section applies to mixed-signal oscilloscopes (MSOs) only

A PicoScope MSO has two 8-bit digital ports—PORT0 and PORT1—containing a total of 16 digital channels.

The data from each port is returned in a separate buffer that is set up by the ps2000aSetDataBuffer()

and ps2000aSetDataBuffers() functions. For compatibility with the analog channels, each buffer is an
array of 16-bit words. The 8-bit port data occupies the lower 8 bits of the word, and the upper 8 bits of the
word are undefined.

PORT1 buffer PORT0 buffer

Sample0 [XXXXXXXX,D15...D8]0 [XXXXXXXX,D7...D0]0
...

Samplen-1 [XXXXXXXX,D15...D8]n-1 [XXXXXXXX,D7...D0]n-1

Retrieving stored digital data
The following C code snippet shows how to combine data from the two 8-bit ports into a single 16-bit word
and then extract individual bits from the 16-bit word.

// Mask Port 1 values to get lower 8 bits

portValue = 0x00ff & appDigiBuffers[2][i];

// Shift by 8 bits to place in upper 8 bits of 16-bit word

portValue <<= 8;

// Mask Port 0 values to get lower 8 bits and apply bitwise

// inclusive OR to combine with Port 1 values

portValue |= 0x00ff & appDigiBuffers[0][i];

for (bit = 0; bit < 16; bit++)

{

 // Shift value (32768 - binary 1000 0000 0000 0000),

 // AND with value to get 1 or 0 for channel.

 // Order will be D15 to D8, then D7 to D0.

 bitValue = (0x8000 >> bit) & portValue? 1 : 0;

}

PicoScope 2000 Series (A API) Programmer's Guide 7

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.5 Triggering
PicoScope oscilloscopes can either start collecting data immediately or be programmed to wait for a trigger
event.

For simple trigger setups, call this single function:

· ps2000aSetSimpleTrigger()

For more complex trigger setups, call the three individual trigger functions:

· ps2000aSetTriggerChannelConditions()

· ps2000aSetTriggerChannelDirections()

· ps2000aSetTriggerChannelProperties()

A trigger event can occur when one of the signal or trigger input channels crosses a threshold voltage on
either a rising or a falling edge. It is also possible to combine two inputs using the logic trigger function.

To set up pulse width, delay and dropout triggers, you can also call the pulse width qualifier function:

· ps2000aSetPulseWidthQualifier()

Concepts8

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.6 Sampling modes
PicoScope 2000 Series oscilloscopes can run in various sampling modes.

· Block mode. In this mode, the scope stores data in internal buffer memory and then transfers it to the
PC. When the data has been collected it is possible to examine the data, with an optional downsampling
factor. The data is lost when a new run is started in the same segment, the settings are changed, or the
scope is powered down.

· ETS mode. In this mode, it is possible to increase the effective sampling rate of the scope when
capturing repetitive signals. It is a modified form of block mode.

· Rapid block mode. This is a variant of block mode that allows you to capture more than one waveform at
a time with a minimum of delay between captures. You can use downsampling in this mode if you wish.

· Streaming mode. In this mode, data is passed directly to the PC without being stored in the scope's
internal buffer memory. This enables long periods of data collection for chart recorder and data-logging
applications. Streaming mode supports downsampling and triggering, while providing fast streaming at
typical rates of 1 to 10 MS/s, as specified in the data sheet for your device.

In all sampling modes, the driver returns data asynchronously using a callback. This is a call to one of the
functions in your own application. When you request data from the scope, you pass to the driver a pointer to
your callback function. When the driver has written the data to your buffer, it makes a callback (calls your
function) to signal that the data is ready. The callback function then signals to the application that the data
is available.

Because the callback is called asynchronously from the rest of your application, in a separate thread, you
must ensure that it does not corrupt any global variables while it runs.

For compatibility with programming environments not supporting C-style callback functions, polling of the
driver is available in block mode.

PicoScope 2000 Series (A API) Programmer's Guide 9

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.1 Block mode

In block mode, the computer prompts a PicoScope 2000 Series oscilloscope to collect a block of data into
its internal memory. When the oscilloscope has collected the whole block, it signals that it is ready and then
transfers the whole block to the computer's memory through the USB port.

· Block size. The maximum number of values depends upon the size of the oscilloscope's memory. The
memory buffer is shared between the enabled channels, so if two channels are enabled, each receives
half the memory, and if three or four channels are enabled, each receives a quarter of the memory. This
partitioning is handled transparently by the driver. The block size also depends on the number of memory

segments in use – see ps2000aMemorySegments().

Note: The PicoScope MSO models behave differently. If only the two analog channels or only the two
digital ports are enabled, each receives half the memory. If any combination of one or two analog
channels and one or two digital ports is enabled, each receives a quarter of the memory.

· Sampling rate. A PicoScope 2000 Series oscilloscope can sample at different rates according to the
selected timebase and the combination of enabled channels. See the Timebases section for the
specifications that apply to your scope model.

· Setup time. The driver normally performs a number of setup operations, which can take up to
50 milliseconds, before collecting each block of data. If you need to collect data with the minimum time
interval between blocks, use rapid block mode and avoid calling setup functions between calls to

ps2000aRunBlock(), ps2000aStop() and ps2000aGetValues().

· Downsampling. When the data has been collected, you can set an optional downsampling factor and
examine the data. Downsampling is a process that reduces the amount of data by combining adjacent
samples. It is useful for zooming in and out of the data without having to repeatedly transfer the entire
contents of the scope's buffer to the PC.

· Memory segmentation. The scope's internal memory can be divided into segments so that you can

capture several waveforms in succession. Configure this using ps2000aMemorySegments().

· Data retention. The data is lost when a new run is started in the same segment, the settings are changed,
or the scope is powered down.

See Using block mode for programming details.

Concepts10

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.6.1.1 Using block mode

This is the general procedure for reading and displaying data in block mode using a single memory segment:

Note: Use the * steps when using the digital ports on MSO models.

1. Open the oscilloscope using ps2000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps2000aSetChannel().

2*. Set the digital port using ps2000aSetDigitalPort().

3. Using ps2000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps2000aSetTriggerChannelConditions(),

ps2000aSetTriggerChannelDirections() and ps2000aSetTriggerChannelProperties()
to set up the trigger if required.

4*. Use the trigger setup functions ps2000aSetTriggerDigitalPortProperties() and

ps2000aSetTriggerChannelConditions() to set up the digital trigger if required.

5. Start the oscilloscope running using ps2000aRunBlock().

6. Wait until the oscilloscope is ready using the ps2000aBlockReady() callback (or poll using

ps2000aIsReady()).

7. Use ps2000aSetDataBuffer() to tell the driver where your memory buffer is. (For greater efficiency
when doing multiple captures, you can call this function outside the loop, after step 4.)

8. Transfer the block of data from the oscilloscope using ps2000aGetValues().
9. Display the data.
10. Repeat steps 5 to 9.

11. Stop the oscilloscope using ps2000aStop().
12. Request new views of stored data using different downsampling parameters. See Retrieving stored

data.

13. Call ps2000aCloseUnit().

PicoScope 2000 Series (A API) Programmer's Guide 11

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.1.2 Asynchronous calls in block mode

To avoid blocking the calling thread when calling ps2000aGetValues(), it is possible to call

ps2000aGetValuesAsync() instead. This immediately returns control to the calling thread, which then

has the option of waiting for the data or calling ps2000aStop() to abort the operation.

Concepts12

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.6.2 Rapid block mode

In normal block mode, the PicoScope 2000 Series scopes collect one waveform at a time. You start the the
device running, wait until all samples are collected by the device, and then download the data to the PC or
start another run. There is a time overhead of tens of milliseconds associated with starting a run, causing a
gap between waveforms. When you collect data from the device, there is another minimum time overhead
which is most noticeable when using a small number of samples.

Rapid block mode allows you to sample several waveforms in succession with minimal time between
waveforms. It reduces the gap from milliseconds to less than 2 microseconds (on the fastest timebase).
Each waveform is stored in a separate buffer segment.

2.6.2.1 Using rapid block mode

You can use rapid block mode with or without aggregation. With aggregation, you need to set up two buffers
per channel to receive the minimum and maximum values.

Note: Use the * steps when using the digital ports on the mixed-signal (MSO) models.

Without aggregation

1. Open the oscilloscope using ps2000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps2000aSetChannel().

3. [MSOs only] Set the digital port using ps2000aSetDigitalPort().
4. Set the number of memory segments equal to or greater than the number of captures required using

ps2000aMemorySegments(). Use ps2000aSetNoOfCaptures() before each run to specify the
number of waveforms to capture.

5. Using ps2000aGetTimebase(), select timebases from zero upwards until the required number of
nanoseconds per sample is located.

6. Use the trigger setup functions ps2000aSetTriggerChannelConditions(),

ps2000aSetTriggerChannelDirections() and

ps2000aSetTriggerChannelProperties() to set up the trigger if required.

7. [MSOs only] Use the trigger setup functions ps2000aSetTriggerDigitalPortProperties()

and ps2000aSetTriggerChannelConditions() to set up the digital trigger if required.

8. Start the oscilloscope running using ps2000aRunBlock().

9. Wait until the oscilloscope is ready using the ps2000aIsReady() or wait on the callback function.

10. Use ps2000aSetDataBuffer() to tell the driver where your memory buffers are. Call the function
once for each channel/segment combination for which you require data. For greater efficiency, these
calls can be made outside the loop, between steps 7 and 8.

11. Transfer the blocks of data from the oscilloscope using ps2000aGetValuesBulk().
12. Retrieve the time offset for each data segment using

ps2000aGetValuesTriggerTimeOffsetBulk64().
13. Display the data.
14. Repeat steps 8 to 13 if you wish to capture more data.

15. Stop the oscilloscope using ps2000aStop().

16. Call ps2000aCloseUnit().

With aggregation
To use rapid block mode with aggregation, follow steps 1 to 9 above and then:

10a. Call ps2000aSetDataBuffer() or (ps2000aSetDataBuffers()) to set up one pair of buffers for
every waveform segment required.

11a. Call ps2000aGetValuesBulk() for each pair of buffers.
12a. Retrieve the time offset for each data segment using

ps2000aGetValuesTriggerTimeOffsetBulk64().

Continue from step 13.

PicoScope 2000 Series (A API) Programmer's Guide 13

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.2.2 Rapid block mode example 1: no aggregation

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the no of captures required)

// Set the number of waveforms to 32

ps2000aSetNoOfCaptures (handle, 32);

pParameter = false;

ps2000aRunBlock

(

handle,

0, // noOfPreTriggerSamples

MAX_SAMPLES, // noOfPostTriggerSamples

1, // timebase to be used

1,

&timeIndisposedMs,

0, // segment index

lpReady,

&pParameter

);

Comment: these variables have been set as an example and can be any valid value. pParameter will be set

true by your callback function lpReady.

while (!pParameter) Sleep (0);

for (int i = 0; i < 10; i++)

{

for (int c = PS2000A_CHANNEL_A; c <= PS2000A_CHANNEL_B; c++)

{

ps2000aSetDataBuffer

(

handle,

c,

&buffer[c][i],

MAX_SAMPLES,

i,

PS2000A_RATIO_MODE_NONE

);

}

}

Comments: buffer has been created as a two-dimensional array of pointers to int16_t, which will contain

1000 samples as defined by MAX_SAMPLES. There are only 10 buffers set, but it is possible to set up to the
number of captures you have requested.

Concepts14

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

ps2000aGetValuesBulk

(

handle,

&noOfSamples, // set to MAX_SAMPLES on entering the function

10, // fromSegmentIndex

19, // toSegmentIndex

1, // downsampling ratio

PS2000A_RATIO_MODE_NONE, // downsampling ratio mode

overflow // an array of size 10 int16_t

)

Comments: See the earlier snippets for code to set up the segment buffers.

The number of samples could be up to noOfPreTriggerSamples + noOfPostTriggerSamples, the

values set in ps2000aRunBlock. The samples are always returned from the first sample taken, unlike the

ps2000aGetValues function which allows the sample index to be set. The above segments start at 10

and finish at 19 inclusive. It is possible for the fromSegmentIndex to wrap around to the

toSegmentIndex, by setting the fromSegmentIndex to 28 and the toSegmentIndex to 7.

ps2000aGetValuesTriggerTimeOffsetBulk64

(

handle,

times,

timeUnits,

10,

19

)

Comments: the above segments start at 10 and finish at 19 inclusive. It is possible for the

fromSegmentIndex to wrap around to the toSegmentIndex, if the fromSegmentIndex is set to 28

and the toSegmentIndex to 7.

PicoScope 2000 Series (A API) Programmer's Guide 15

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.2.3 Rapid block mode example 2: using aggregation

#define MAX_SAMPLES 1000

Set up the device up as usual.

· Open the device

· Channels

· Trigger

· Number of memory segments (this should be equal or more than the number of captures required)

// Set the number of waveforms to 32

ps2000aSetNoOfCaptures(handle, 32);

pParameter = false;

ps2000aRunBlock

(

handle,

0, // noOfPreTriggerSamples,

MAX_SAMPLES, // noOfPostTriggerSamples,

1, // timebase to be used,

1,

&timeIndisposedMs,

1, // SegmentIndex

lpReady,

&pParameter

);

Comments: the set-up for running the device is exactly the same whether or not aggregation will be used
when you retrieve the samples.

for (int segment = 10; segment < 20; segment++)

{

for (int c = PS2000A_CHANNEL_A; c <= PS2000A_CHANNEL_D; c++)

{

ps2000aSetDataBuffers

(

handle,

c,

&bufferMax[c],

&bufferMin[c]

MAX_SAMPLES

segment,

PS2000A_RATIO_MODE_AGGREGATE

);

}

}

Comments: since only one waveform will be retrieved at a time, you only need to set up one pair of buffers;
one for the maximum samples and one for the minimum samples. Again, the buffer sizes are 1000
(MAX_SAMPLES) samples.

ps2000aGetValues

(

Concepts16

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

 handle,

 0,

 &noOfSamples, // set to MAX_SAMPLES on entering

 10,

 &downSampleRatioMode, //set to RATIO_MODE_AGGREGATE

 index,

 overflow

);

ps2000aGetTriggerTimeOffset64

(

 handle,

 &time,

 &timeUnits,

 index

);

Comments: each waveform is retrieved one at a time from the driver with an aggregation of 10.

PicoScope 2000 Series (A API) Programmer's Guide 17

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.3 ETS (Equivalent Time Sampling)

ETS is a way of increasing the effective sampling rate of the scope when capturing repetitive signals. It is a
modified form of block mode, and is controlled by the ps2000a set of trigger functions and the

ps2000aSetEts() function.

· Overview. ETS works by capturing several cycles of a repetitive waveform, then combining them to
produce a composite waveform that has a higher effective sampling rate than the individual captures.
The scope hardware accurately measures the delay, which is a small fraction of a single sampling
interval, between each trigger event and the subsequent sample. The driver then shifts each capture
slightly in time and overlays them so that the trigger points are exactly lined up. The result is a larger set
of samples spaced by a small fraction of the original sampling interval. The maximum effective sampling
rates that can be achieved with this method are listed in the User's Guide for the scope device. Other
scopes do not contain special ETS hardware, so the composite waveform is created by software.

· Trigger stability. Because of the high sensitivity of ETS mode to small time differences, the trigger must
be set up to provide a stable waveform that varies as little as possible from one capture to the next.

· Callback. ETS mode calls the ps2000aBlockReady() callback function when a new waveform is ready

for collection. The ps2000aGetValues() function needs to be called for the waveform to be retrieved.

Applicability Available in block mode only.
Not suitable for one-shot (non-repetitive) signals.
Aggregation is not supported.
Edge-triggering only.
Trigger source may be limited to specific input channels - see device datasheet.

Auto trigger delay (autoTriggerMilliseconds) is ignored.
Cannot be used when MSO digital ports are enabled.

Concepts18

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.6.3.1 Using ETS mode

This is the general procedure for reading and displaying data in ETS mode using a single memory segment:

1. Open the oscilloscope using ps2000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps2000aSetChannel().

3. Use ps2000aSetEts() to enable ETS and set the parameters.

4. Use the trigger setup functions ps2000aSetTriggerChannelConditions(),

ps2000aSetTriggerChannelDirections() and ps2000aSetTriggerChannelProperties()
to set up the trigger if required.

5. Start the oscilloscope running using ps2000aRunBlock().

6. Wait until the oscilloscope is ready using the ps2000aBlockReady() callback (or poll using

ps2000aIsReady()).

7. Use ps2000aSetDataBuffer() to tell the driver where to store sampled data.

8. Use ps2000aSetEtsTimeBuffer() or ps2000aSetEtsTimeBuffers() to tell the driver where to
store sample times.

9. Transfer the block of data from the oscilloscope using ps2000aGetValues().
10. Display the data.
11. While you want to collect updated captures, repeat steps 7 to 10.
12. Repeat steps 5 to 11.

13. Stop the oscilloscope using ps2000aStop().

14. Call ps2000aCloseUnit().

PicoScope 2000 Series (A API) Programmer's Guide 19

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.4 Streaming mode

Streaming mode, unlike block mode, can capture data without gaps between blocks. Streaming mode
supports downsampling and triggering, while providing fast streaming. This makes it suitable for high-speed
data acquisition, allowing you to capture long data sets limited only by the computer's memory.

Aggregation
The driver returns aggregated readings while the device is streaming. If aggregation is set to 1, only one
buffer is used per channel. When aggregation is set above 1, two buffers (maximum and minimum) per
channel are used.

See Using streaming mode for programming details.

Concepts20

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.6.4.1 Using streaming mode

This is the general procedure for reading and displaying data in streaming mode:

Note: Please use the * steps when using the digital ports on the mixed-signal (MSO) models.

1. Open the oscilloscope using ps2000aOpenUnit().

2. Select channels, ranges and AC/DC coupling using ps2000aSetChannel().

*2. Set the digital port using ps2000aSetDigitalPort().

3. Use the trigger setup functions ps2000aSetTriggerChannelConditions(),

ps2000aSetTriggerChannelDirections() and ps2000aSetTriggerChannelProperties()
to set up the trigger if required.

*3. Use the trigger setup functions ps2000aSetTriggerDigitalPortProperties() and

ps2000aSetTriggerChannelConditions() to set up the digital trigger if required.

4. Call ps2000aSetDataBuffer() (or ps2000aSetDataBuffers() if you will be using aggregation)
to tell the driver where your data buffer is.

5. Start the oscilloscope running using ps2000aRunStreaming().

6. Call ps2000aGetStreamingLatestValues() to get data.

7. Process data returned to your application's function. This example is using autoStop, so after the
driver has received all the data points requested by the application, it stops the device streaming.

8. Call ps2000aStop(), even if autoStop is enabled.
9. Request new views of stored data using different downsampling parameters: see Retrieving stored

data.

10. Call ps2000aCloseUnit().

PicoScope 2000 Series (A API) Programmer's Guide 21

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.6.5 Retrieving stored data

You can collect data from the ps2000a driver with a different downsampling factor when

ps2000aRunBlock() or ps2000aRunStreaming() has already been called and has successfully

captured all the data. Use ps2000aGetValuesAsync().

Concepts22

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

2.7 Timebases

The ps2000a API allows you to select any of 232 different timebases based on the maximum sampling rate†

of your oscilloscope. The timebases allow slow enough sampling in block mode to overlap the streaming
sample intervals, so that you can make a smooth transition between block mode and streaming mode.

Calculate the timebase using ps2000aGetTimebase().

500 MS/s maximum sampling rate models:

timebase (n) sample interval formula sample interval values

0

2n / 500,000,000

2 ns*

1 4 ns

2 8 ns

3 to 232–1 (n – 2) / 62,500,000
3 => 16 ns
...

232–1 => ~ 69 s

1 GS/s maximum sampling rate models:

timebase (n) sample interval formula sample interval values

0

2n / 1,000,000,000

1 ns*

1 2 ns

2 4 ns

3 to 232–1 (n – 2) / 125,000,000
3 => 8 ns
...

232–1 => ~ 34 s

PicoScope 2205 MSO:

timebase (n) sample interval formula sample interval values

0 2n / 200,000,000 0 => 5 ns**

1

n / 100,000,000

10 ns

2 20 ns

3 to 232–1

3 => 30 ns
...

232–1 => ~ 43 s

† The fastest available sampling rate may depend on which channels are enabled, and on the sampling mode. Refer
to the oscilloscope data sheet for sampling rate specifications. In streaming mode the sampling rate may additionally be limited
by the speed of the USB port.

* Available only in single-channel mode.
** Not available when channel B active, nor when channel A and both digital ports active.

ETS mode
In ETS mode the sample time is not set according to the above tables but is instead calculated and returned

by ps2000aSetEts().

PicoScope 2000 Series (A API) Programmer's Guide 23

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2.8 MSO digital connector
The MSO models have a digital input connector. The layout of the 20-pin header plug is detailed below. The
diagram is drawn as you look at the front panel of the device.

2.9 Combining oscilloscopes
It is possible to collect data using up to 64 PicoScope 2000 Series oscilloscopes at the same time, subject
to the capabilities of the PC. Each oscilloscope must be connected to a separate USB port. The

ps2000aOpenUnit() function returns a handle to an oscilloscope. All the other functions require this
handle for oscilloscope identification. For example, to collect data from two oscilloscopes at the same time:

CALLBACK ps2000aBlockReady(...)

// define callback function specific to application

handle1 = ps2000aOpenUnit()

handle2 = ps2000aOpenUnit()

ps2000aSetChannel(handle1)

// set up unit 1

ps2000aSetDigitalPort(handle1) // only when using MSO

ps2000aRunBlock(handle1)

ps2000aSetChannel(handle2)

// set up unit 2

ps2000aSetDigitalPort(handle2) // only when using MSO

ps2000aRunBlock(handle2)

// data will be stored in buffers

// and application will be notified using callback

ready = FALSE

while not ready

 ready = handle1_ready

 ready &= handle2_ready

API functions24

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3 API functions

The ps2000a API exports a number of functions for you to use in your own applications. All functions are C

functions using the standard call naming convention (__stdcall). They are all exported with both
decorated and undecorated names.

3.1 ps2000aBlockReady() – find out if block-mode data
ready

typedef void (CALLBACK *ps2000aBlockReady)

(

int16_t handle,

PICO_STATUS status,

void * pParameter

)

This callback function is part of your application. You register it with the ps2000a driver using

ps2000aRunBlock(), and the driver calls it back when block-mode data is ready. The callback function
may check that data is available or detect that an error has occurred, but should not attempt to retrieve
captured data by calling other ps2000a functions. After the callback function has returned, another part of

your application can download the data using ps2000aGetValues().

Applicability Block mode only

Arguments

handle, device identifier returned by ps2000aOpenUnit().

status, indicates whether an error occurred during collection of the data.

* pParameter, a void pointer passed from ps2000aRunBlock(). Your callback function can write to
this location to send any data, such as a status flag, back to your application.

Returns nothing

PicoScope 2000 Series (A API) Programmer's Guide 25

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.2 ps2000aCloseUnit() – close a scope device

PICO_STATUS ps2000aCloseUnit

(

int16_t handle

)

This function shuts down an oscilloscope.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions26

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.3 ps2000aDataReady() – find out if post-collection
data ready

typedef void (__stdcall *ps2000aDataReady)

(

int16_t handle,

PICO_STATUS status,

uint32_t noOfSamples,

int16_t overflow,

void * pParameter

)

This is a callback function that you write to collect data from the driver. You supply a pointer to the function

when you call ps2000aGetValuesAsync, and the driver calls your function back when the data is ready.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

status, a PICO_STATUS code returned by the driver.

noOfSamples, the number of samples collected.

overflow, a set of flags that indicates whether an overvoltage has occurred and on which channels. It is a
bit field with bit 0 representing Channel A.

* pParameter, a void pointer passed from ps2000aGetValuesAsync(). The callback function can
write to this location to send any data, such as a status flag, back to the application. The data type is defined
by the application programmer.

Returns nothing

PicoScope 2000 Series (A API) Programmer's Guide 27

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.4 ps2000aEnumerateUnits() – find all connected
oscilloscopes

PICO_STATUS ps2000aEnumerateUnits

(

int16_t * count,

int8_t * serials,

int16_t * serialLth

)

This function counts the number of unopened PicoScope 2000 Series (A API) units connected to the
computer and returns a list of serial numbers as a string. It does not detect units that already have a handle
assigned to them by the driver.

Applicability All modes

Arguments

* count, on exit, the number of ps2000a units found.

* serials, on exit, a list of serial numbers separated by commas and terminated by a final null.

Example: AQ005/139,VDR61/356,ZOR14/107

Can be NULL on entry if serial numbers are not required.

* serialLth, on entry, the length of the char buffer pointed to by serials; on exit, the length of the

string written to serials

Returns PICO_OK

PICO_BUSY

PICO_NULL_PARAMETER

PICO_FW_FAIL

PICO_CONFIG_FAIL

PICO_MEMORY_FAIL

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

API functions28

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.5 ps2000aFlashLed() – flash the front-panel LED

PICO_STATUS ps2000aFlashLed

(

int16_t handle,

int16_t start

)

This function flashes the LED on the front of the scope without blocking the calling thread. Calls to

ps2000aRunStreaming() and ps2000aRunBlock() cancel any flashing started by this function. It is
not possible to set the LED to be constantly illuminated, as this state is used to indicate that the scope has
not been initialized.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

start, the action required:

< 0 : flash the LED indefinitely
0 : stop the LED flashing
> 0 : flash the LED start times. If the LED is already flashing on entry to this function, the flash

count will be reset to start.

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_BUSY

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

PicoScope 2000 Series (A API) Programmer's Guide 29

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.6 ps2000aGetAnalogueOffset() – get allowable offset
range

PICO_STATUS ps2000aGetAnalogueOffset

(

int16_t handle,

PS2000A_RANGE range,

PS2000A_COUPLING coupling

float * maximumVoltage,

float * minimumVoltage

)

This function is used to get the maximum and minimum allowable analog offset for a specific voltage range.

Applicability All ps2000a units except the PicoScope 2205 MSO

Arguments

handle, device identifier returned by ps2000aOpenUnit().

range, the voltage range to be used when gathering the min and max information.

coupling, the type of AC/DC coupling used.

* maximumVoltage, output: maximum voltage allowed for the range. Pointer will be ignored if NULL. If
device does not support analog offset, zero will be returned.

* minimumVoltage, output: minimum voltage allowed for the range. Pointer will be ignored if NULL. If

device does not support analog offset, zero will be returned.

If both maximumVoltage and minimumVoltage are NULL, the driver will return PICO_NULL_PARAMETER.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_VOLTAGE_RANGE

PICO_NULL_PARAMETER

API functions30

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.7 ps2000aGetChannelInformation() – get list of
available ranges

PICO_STATUS ps2000aGetChannelInformation

(

int16_t handle,

PS2000A_CHANNEL_INFO info

int32_t probe

int32_t * ranges

int32_t * length

int32_t channels

)

This function queries which ranges are available on a scope device.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

info, the type of information required. The following value is currently supported:

PS2000A_CI_RANGES

probe, not used, must be set to 0.

* ranges, an array that will be populated with available PS2000A_RANGE values for the given info. If

NULL, length is set to the number of ranges available.

* length, input: length of ranges array; output: number of elements written to ranges array.

channels, the channel for which the information is required.

Returns PICO_OK

PICO_HANDLE_INVALID

PICO_BUSY

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_INVALID_CHANNEL

PICO_INVALID_INFO

PicoScope 2000 Series (A API) Programmer's Guide 31

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.8 ps2000aGetMaxDownSampleRatio() – get
aggregation ratio for data

PICO_STATUS ps2000aGetMaxDownSampleRatio

(

int16_t handle,

uint32_t noOfUnaggregatedSamples,

uint32_t * maxDownSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex

)

This function returns the maximum downsampling ratio that can be used for a given number of samples in a
given downsampling mode.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

noOfUnaggregatedSamples, the number of unprocessed samples to be downsampled.

* maxDownSampleRatio, the maximum possible downsampling ratio output.

downSampleRatioMode, the downsampling mode. See ps2000aGetValues().

segmentIndex, the memory segment where the data is stored.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions32

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.9 ps2000aGetMaxSegments() – find out how many
segments allowed

PICO_STATUS ps2000aGetMaxSegments

(

int16_t handle,

uint32_t * maxsegments

)

This function returns the maximum number of segments allowed for the opened variant. Refer to

ps2000aMemorySegments() for specific figures.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* maxsegments, output: maximum number of segments allowed.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PicoScope 2000 Series (A API) Programmer's Guide 33

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.10 ps2000aGetNoOfCaptures() – get number of
captures available

PICO_STATUS ps2000aGetNoOfCaptures

(

int16_t handle,

uint32_t * nCaptures

)

This function finds out how many captures are available in rapid block mode after ps2000aRunBlock()
has been called. It can be called during data capture, or after the normal end of collection, or after data

collection was terminated by ps2000aStop(). The returned value (* nCaptures) can then be used to

iterate through the number of segments using ps2000aGetValues(), or in a single call to

ps2000aGetValuesBulk() where it is used to calculate the toSegmentIndex parameter.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* nCaptures, output: the number of available captures that has been collected from calling

ps2000aRunBlock().

Returns PICO_OK

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

PICO_NOT_RESPONDING

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

API functions34

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.11 ps2000aGetNoOfProcessedCaptures() – get
number of captures processed

PICO_STATUS ps2000aGetNoOfProcessedCaptures

(

int16_t handle,

uint32_t * nCaptures

)

This function finds out how many captures in rapid block mode have been processed after

ps2000aRunBlock() has been called and the collection is either still in progress, completed, or interrupted

by a call to ps2000aStop().

It is mainly intended for use while capture is still in progress and you are collecting data using

ps2000aGetValuesOverlappedBulk(). The returned value (* nCaptures) indicates how many
captures have been completed and therefore how many buffer segments have been filled.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* nCaptures, output: the number of available captures resulting from the call to ps2000aRunBlock().

Returns PICO_OK

PICO_DRIVER_FUNCTION

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_TOO_MANY_SAMPLES

PicoScope 2000 Series (A API) Programmer's Guide 35

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.12 ps2000aGetStreamingLatestValues() – get
streaming data while scope is running

PICO_STATUS ps2000aGetStreamingLatestValues

(

int16_t handle,

ps2000aStreamingReady lpPs2000AReady,

void * pParameter

)

This function instructs the driver to return the next block of values to your ps2000aStreamingReady()

callback function. You must have previously called ps2000aRunStreaming() beforehand to set up
streaming.

Applicability Streaming mode only

Arguments

handle, device identifier returned by ps2000aOpenUnit().

lpPs2000AReady, a pointer to your ps2000aStreamingReady() callback function

* pParameter, a void pointer that will be passed to the ps2000aStreamingReady() callback function.
The callback function may optionally use this pointer to return information to the application.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_INVALID_CALL

PICO_BUSY

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

API functions36

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.13 ps2000aGetTimebase() – find out what timebases
are available

PICO_STATUS ps2000aGetTimebase

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

int32_t * timeIntervalNanoseconds,

int16_t oversample,

int32_t * maxSamples

uint32_t segmentIndex

)

This function calculates the sampling rate and maximum number of samples for a given timebase under the
specified conditions. The result depends on the number of channels enabled by the last call to

ps2000aSetChannel().

This function is provided for use with programming languages that do not support the float data type. The

value returned in the timeIntervalNanoseconds argument is restricted to integers. If your programming

language supports the float type, we recommend that you use ps2000aGetTimebase2() instead.

To use ps2000aGetTimebase() or ps2000aGetTimebase2(), first estimate the timebase number that
you require using the information in the timebase guide. Next, call one of these functions with the timebase

that you have just chosen and verify that the value returned in timeIntervalNanoseconds is the one you
require. You may need to iterate this process until you obtain the time interval that you need.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

timebase, see timebase guide

noSamples, the number of samples required

* timeIntervalNanoseconds, on exit, the time interval between readings at the selected timebase. Use

NULL if not required. In ETS mode this argument is not valid; use the sample time returned by

ps2000aSetEts() instead.

oversample, not used

* maxSamples, on exit, the maximum number of samples available. The scope allocates a certain
amount of memory for internal overheads and this may vary depending on the number of segments, number

of channels enabled, and the timebase chosen. Use NULL if not required.

segmentIndex, the index of the memory segment to use.

PicoScope 2000 Series (A API) Programmer's Guide 37

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SAMPLES

PICO_INVALID_CHANNEL

PICO_INVALID_TIMEBASE

PICO_INVALID_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_DRIVER_FUNCTION

API functions38

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.14 ps2000aGetTimebase2() – find out what timebases
are available

PICO_STATUS ps2000aGetTimebase2

(

int16_t handle,

uint32_t timebase,

int32_t noSamples,

float * timeIntervalNanoseconds,

int16_t oversample,

int32_t * maxSamples

uint32_t segmentIndex

)

This function is an upgraded version of ps2000aGetTimebase(), and returns the time interval as a float

rather than a long. This allows it to return sub-nanosecond time intervals. See ps2000aGetTimebase()
for a full description.

Applicability All modes

Arguments

* timeIntervalNanoseconds, a pointer to the time interval between readings at the selected timebase.
If a null pointer is passed, nothing will be written here.

All other arguments: see ps2000aGetTimebase().

Returns See ps2000aGetTimebase()

PicoScope 2000 Series (A API) Programmer's Guide 39

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.15 ps2000aGetTriggerTimeOffset() – find out when
trigger occurred (32-bit)

PICO_STATUS ps2000aGetTriggerTimeOffset

(

int16_t handle

uint32_t * timeUpper

uint32_t * timeLower

PS2000A_TIME_UNITS * timeUnits

uint32_t segmentIndex

)

This function retrieves the time offset, as lower and upper 32-bit values, for a waveform obtained in block
mode or rapid block mode. The time offset of a waveform is the delay from the trigger sampling instant to
the time at which the driver estimates the waveform to have crossed the trigger threshold. You can add this
offset to the time of each sample in the waveform to reduce trigger jitter. Without using the time offset,
trigger jitter can be up to 1 sample period; adding the time offset reduces jitter to a small fraction of a
sample period.

Call it after block-mode data has been captured or when data has been retrieved from a previous block-

mode capture. A 64-bit version of this function, ps2000aGetTriggerTimeOffset64(), is also available.

Applicability Block mode, rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* timeUpper, on exit, the upper 32 bits of the time at which the trigger point occurred

* timeLower, on exit, the lower 32 bits of the time at which the trigger point occurred

* timeUnits, returns the time units in which timeUpper and timeLower are measured. The allowable
values are:

PS2000A_FS

PS2000A_PS

PS2000A_NS

PS2000A_US

PS2000A_MS

PS2000A_S

segmentIndex, the number of the memory segment for which the information is required.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions40

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.16 ps2000aGetTriggerTimeOffset64() – find out when
trigger occurred (64-bit)

PICO_STATUS ps2000aGetTriggerTimeOffset64

(

int16_t handle,

int64_t * time,

PS2000A_TIME_UNITS * timeUnits,

uint32_t segmentIndex

)

This function retrieves the time offset for a waveform obtained in block mode or rapid block mode. The time
offset of a waveform is the delay from the trigger sampling instant to the time at which the driver estimates
the waveform to have crossed the trigger threshold. You can add this offset to the time of each sample in
the waveform to reduce trigger jitter. Without using the time offset, trigger jitter can be up to 1 sample
period; adding the time offset reduces jitter to a small fraction of a sample period.

Call it after block-mode data has been captured or when data has been retrieved from a previous block-

mode capture. A 32-bit version of this function, ps2000aGetTriggerTimeOffset(), is also available.

Applicability Block mode, rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* time, on exit, the time at which the trigger point occurred.

* timeUnits, on exit, the time units in which time is measured. The possible values are:

PS2000A_FS

PS2000A_PS

PS2000A_NS

PS2000A_US

PS2000A_MS

PS2000A_S

segmentIndex, the number of the memory segment for which the information is required.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 41

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.17 ps2000aGetUnitInfo() – get information about
scope device

PICO_STATUS ps2000aGetUnitInfo

(

int16_t handle,

int8_t * string,

int16_t stringLength,

int16_t * requiredSize

PICO_INFO info

)

This function retrieves information about the specified oscilloscope. If the device fails to open, or no device
is opened only the driver version is available.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit(). If an invalid handle is passed, only the driver
versions can be read.

* string, on exit, the unit information string selected specified by the info argument. If string is

NULL, only requiredSize is returned.

stringLength, the maximum number of chars that may be written to string.

* requiredSize, on exit, the required length of the string array.

info, a number specifying what information is required. The possible values are listed in the table below.

info Example

0 PICO_DRIVER_VERSION
Version number of PicoScope 2000A DLL

1.0.0.1

1 PICO_USB_VERSION
Type of USB connection to device: 1.1 or 2.0

2.0

2 PICO_HARDWARE_VERSION
Hardware version of device

1

3 PICO_VARIANT_INFO
Variant number of device

2206

4 PICO_BATCH_AND_SERIAL
Batch and serial number of device

KJL87/006

5 PICO_CAL_DATE
Calibration date of device

30Sep09

6 PICO_KERNEL_VERSION
Version of kernel driver

1.0

7 PICO_DIGITAL_HARDWARE_VERSION
Hardware version of the digital section

1

8 PICO_ANALOGUE_HARDWARE_VERSION
Hardware version of the analog section

1

9 PICO_FIRMWARE_VERSION_1 1.0.0.0

10 PICO_FIRMWARE_VERSION_2 1.0.0.0

API functions42

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_INVALID_INFO

PICO_INFO_UNAVAILABLE

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 43

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.18 ps2000aGetValues() – get block-mode data with
callback

PICO_STATUS ps2000aGetValues

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function returns block-mode data, with or without downsampling, starting at the specified sample
number. It is used to get the stored data from the driver after data collection has stopped. It blocks the
calling function while retrieving data.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Note that if you are using block mode and call this function before the oscilloscope is ready, no capture will

be available and the driver will return PICO_NO_SAMPLES_AVAILABLE.

Applicability Block mode, rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

startIndex, a zero-based index that indicates the start point for data collection. It is measured in sample
intervals from the start of the buffer.

* noOfSamples, on entry, the number of samples required. On exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested, and the data retrieved starts at

startIndex.

downSampleRatio, the downsampling factor that will be applied to the raw data.

downSampleRatioMode, which downsampling mode to use. The available values are:

PS2000A_RATIO_MODE_NONE (downSampleRatio is ignored)

PS2000A_RATIO_MODE_AGGREGATE

PS2000A_RATIO_MODE_AVERAGE

PS2000A_RATIO_MODE_DECIMATE

AGGREGATE, AVERAGE, DECIMATE are single-bit constants that can be ORed to apply multiple
downsampling modes to the same data.

segmentIndex, the zero-based number of the memory segment where the data is stored.

* overflow, on exit, a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit field with bit 0 denoting Channel A.

API functions44

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_SEGMENT_OUT_OF_RANGE

PICO_STARTINDEX_INVALID

PICO_ETS_NOT_RUNNING

PICO_BUFFERS_NOT_SET

PICO_INVALID_PARAMETER

PICO_TOO_MANY_SAMPLES

PICO_DATA_NOT_AVAILABLE

PICO_STARTINDEX_INVALID

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_NOT_RESPONDING

PICO_MEMORY

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_DRIVER_FUNCTION

3.18.1 Downsampling modes

Various methods of data reduction, or downsampling, are possible with the PicoScope 2000 Series
oscilloscopes. The downsampling is done at high speed, making your application faster and more
responsive than if you had to do all your own data processing.

You specify the downsampling mode when you call one of the data collection functions such as

ps2000aGetValues(). The following modes are available:

PS2000A_RATIO_MODE_NONE No downsampling. Returns the raw data values.

PS2000A_RATIO_MODE_AGGREGATE Reduces every block of n values to just two values: a
minimum and a maximum. The minimum and
maximum values are returned in two separate buffers.

PS2000A_RATIO_MODE_AVERAGE Reduces every block of n values to a single value
representing the average (arithmetic mean) of all the
values. Equivalent to the 'oversampling' function on
older scopes.

PS2000A_RATIO_MODE_DECIMATE Reduces every block of n values to just the first value
in the block, discarding all the other values.

Retrieving multiple types of downsampled data
You can optionally retrieve data using more than one downsampling mode with a single call to

ps2000aGetValues(). Set up a buffer for each downsampling mode by calling

ps2000aSetDataBuffer(). Then, when calling ps2000aGetValues(), set downSampleRatioMode to
the bitwise OR of the required downsampling modes.

Retrieving both raw and downsampled data
You cannot retrieve raw data and downsampled data in a single operation. If you require both raw and
downsampled data, first retrieve the downsampled data as described above and then continue as follows:

1. Call ps2000aStop().

PicoScope 2000 Series (A API) Programmer's Guide 45

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

2. Set up a data buffer for each channel using ps2000aSetDataBuffer() with the ratio mode set to

PS2000A_RATIO_MODE_NONE.

3. Call ps2000aGetValues() to retrieve the data.

API functions46

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.19 ps2000aGetValuesAsync() – get streaming data
with callback

PICO_STATUS ps2000aGetValuesAsync

(

int16_t handle,

uint32_t startIndex,

uint32_t noOfSamples,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

void * lpDataReady,

void * pParameter

)

This function returns data either with or without downsampling, starting at the specified sample number. It
is used to get the stored data from the scope after data collection has stopped. It returns the data using a
callback so as not to block the calling function. It can also be used in streaming mode to retrieve data from
the driver, but in this case it blocks the calling function.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Applicability Streaming mode and block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

startIndex, see ps2000aGetValues()

noOfSamples, see ps2000aGetValues()

downSampleRatio, see ps2000aGetValues()

downSampleRatioMode, see ps2000aGetValues()

segmentIndex, see ps2000aGetValues()

* lpDataReady, a pointer to the user-supplied function that will be called when the data is ready. This

will be a ps2000aDataReady() function for block-mode data or a ps2000aStreamingReady() function
for streaming-mode data.

* pParameter, a void pointer that will be passed to the callback function. The data type is determined by
the application.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SAMPLES_AVAILABLE

PICO_DEVICE_SAMPLING

PICO_NULL_PARAMETER

PICO_STARTINDEX_INVALID

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_PARAMETER

PICO_DATA_NOT_AVAILABLE

PICO_INVALID_SAMPLERATIO

PICO_INVALID_CALL

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 47

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.20 ps2000aGetValuesBulk() – get data in rapid block
mode

PICO_STATUS ps2000aGetValuesBulk

(

int16_t handle,

uint32_t * noOfSamples,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

int16_t * overflow

)

This function retrieves waveforms captured using rapid block mode. The waveforms must have been
collected sequentially and in the same run.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* noOfSamples, on entry, the number of samples required; on exit, the actual number retrieved. The
number of samples retrieved will not be more than the number requested. The data retrieved always starts
with the first sample captured.

fromSegmentIndex, the first segment from which the waveform should be retrieved.

toSegmentIndex, the last segment from which the waveform should be retrieved.

downSampleRatio, see ps2000aGetValues().

downSampleRatioMode, see ps2000aGetValues().

* overflow, an array of integers equal to or larger than the number of waveforms to be retrieved. Each

segment index has a corresponding entry in the overflow array, with overflow[0] containing the flags

for the segment numbered fromSegmentIndex and the last element in the array containing the flags for

the segment numbered toSegmentIndex. Each element in the array is a bit field as described under

ps2000aGetValues().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_INVALID_SAMPLERATIO

PICO_ETS_NOT_RUNNING

PICO_BUFFERS_NOT_SET

PICO_TOO_MANY_SAMPLES

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_RESPONDING

PICO_DRIVER_FUNCTION

API functions48

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.21 ps2000aGetValuesOverlapped() – set up data
collection ahead of capture

PICO_STATUS ps2000aGetValuesOverlapped

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t segmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request in block mode. The request will be

executed, and the arguments validated, when you call ps2000aRunBlock(). The advantage of this

function is that the driver makes contact with the scope only once, when you call ps2000aRunBlock(),

compared with the two contacts that occur when you use the conventional ps2000aRunBlock(),

ps2000aGetValues() calling sequence. This slightly reduces the dead time between successive captures
in block mode.

After calling ps2000aRunBlock(), you can optionally use ps2000aGetValues() to request further
copies of the data. This might be required if you wish to display the data with different data reduction
settings.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Applicability Block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

startIndex, see ps2000aGetValues().

* noOfSamples, on entry, the number of raw samples to be collected before any downsampling is
applied. On exit, the actual number stored in the buffer. The number of samples retrieved will not be more

than the number requested, and the data retrieved starts at startIndex.

downSampleRatio, see ps2000aGetValues()

downSampleRatioMode, see ps2000aGetValues()

segmentIndex, see ps2000aGetValues()

* overflow, see ps2000aGetValuesBulk()

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 49

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.21.1 Using the GetValuesOverlapped functions

1. Open the oscilloscope using ps2000aOpenUnit().

2. Select channel ranges and AC/DC coupling using ps2000aSetChannel().

3. Using ps2000aGetTimebase(), select timebases until the required nanoseconds per sample is
located.

4. Use the trigger setup functions ps2000aSetTriggerChannelDirections() and

ps2000aSetTriggerChannelProperties() to set up the trigger if required.

5. Wait until the oscilloscope is ready using the ps2000aBlockReady() callback (or poll using

ps2000aIsReady()).

6. Use ps2000aSetDataBuffer() to tell the driver where your memory buffer is.

7. Set up the transfer of the block of data from the oscilloscope using

ps2000aGetValuesOverlapped().

8. Start the oscilloscope running using ps2000aRunBlock().

9. Display the data.

10. Stop the oscilloscope.

11. Repeat steps 8 and 9 if needed.

A similar procedure can be used with rapid block mode and ps2000aGetValuesOverlappedBulk().

API functions50

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.22 ps2000aGetValuesOverlappedBulk() – set up data
collection in rapid block mode

PICO_STATUS ps2000aGetValuesOverlappedBulk

(

int16_t handle,

uint32_t startIndex,

uint32_t * noOfSamples,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex,

int16_t * overflow

)

This function allows you to make a deferred data-collection request, which will later be executed, and the

arguments validated, when you call ps2000aRunBlock() in rapid block mode. The advantage of this

method is that the driver makes contact with the scope only once, when you call ps2000aRunBlock(),

compared with the two contacts that occur when you use the conventional ps2000aRunBlock(),

ps2000aGetValuesBulk() calling sequence. This slightly reduces the dead time between successive
captures in rapid block mode.

After calling ps2000aRunBlock(), you can optionally use ps2000aGetValues() to request further
copies of the data. This might be required if you wish to display the data with different data reduction
settings.

If multiple channels are enabled, a single call to this function is sufficient to retrieve data for all channels.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

startIndex, see ps2000aGetValues()

* noOfSamples, see ps2000aGetValuesOverlapped()

downSampleRatio, see ps2000aGetValues()

downSampleRatioMode, see ps2000aGetValues()

fromSegmentIndex, see ps2000aGetValuesBulk()

toSegmentIndex, see ps2000aGetValuesBulk()

* overflow, see ps2000aGetValuesBulk()

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 51

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.23 ps2000aGetValuesTriggerTimeOffsetBulk() – get
rapid-block waveform times (32-bit)

PICO_STATUS ps2000aGetValuesTriggerTimeOffsetBulk

(

int16_t handle,

uint32_t * timesUpper,

uint32_t * timesLower,

PS2000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function retrieves the time offsets, as lower and upper 32-bit values, for waveforms obtained in rapid
block mode. The time offset of a waveform is the delay from the trigger sampling instant to the time at
which the driver estimates the waveform to have crossed the trigger threshold. You can add this offset to
the time of each sample in the waveform to reduce trigger jitter. Without using the time offset, trigger jitter
can be up to 1 sample period; adding the time offset reduces jitter to a small fraction of a sample period.

This function is provided for use in programming environments that do not support 64-bit integers. If your
programming environment supports this data type, it is easier to use

ps2000aGetValuesTriggerTimeOffsetBulk64().

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* timesUpper, an array of integers. On exit, the most significant 32 bits of the time offset for each

requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times

index will hold the toSegmentIndex time offset. The array must be long enough to hold the number of
requested times.

* timesLower, an array of integers. On exit, the least significant 32 bits of the time offset for each

requested segment index. times[0] will hold the fromSegmentIndex time offset and the last times

index will hold the toSegmentIndex time offset. The array size must be long enough to hold the number
of requested times.

* timeUnits, an array of integers. The array must be long enough to hold the number of requested times.

On exit, timeUnits[0] will contain the time unit for fromSegmentIndex and the last element will

contain the time unit for toSegmentIndex. Refer to ps2000aGetTriggerTimeOffset() for allowable
values.

fromSegmentIndex, the first segment for which the time offset is required.

toSegmentIndex, the last segment for which the time offset is required. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last segment to the first.

API functions52

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 53

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.24 ps2000aGetValuesTriggerTimeOffsetBulk64() – get
rapid-block waveform times (64-bit)

PICO_STATUS ps2000aGetValuesTriggerTimeOffsetBulk64

(

int16_t handle,

int64_t * times,

PS2000A_TIME_UNITS * timeUnits,

uint32_t fromSegmentIndex,

uint32_t toSegmentIndex

)

This function retrieves the 64-bit time offsets for waveforms captured in rapid block mode.

A 32-bit version of this function, ps2000aGetValuesTriggerTimeOffsetBulk(), is available for use
with programming languages that do not support 64-bit integers.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* times, an array of integers. On exit, this will hold the time offset for each requested segment index.

times[0] will hold the time offset for fromSegmentIndex, and the last times index will hold the time

offset for toSegmentIndex. The array must be long enough to hold the number of times requested.

* timeUnits, an array of integers long enough to hold the number of requested times. timeUnits[0]

will contain the time unit for fromSegmentIndex, and the last element will contain the

toSegmentIndex. Refer to ps2000aGetTriggerTimeOffset64() for specific figures.

fromSegmentIndex, the first segment for which the time offset is required. The results for this segment

will be placed in times[0] and timeUnits[0].

toSegmentIndex, the last segment for which the time offset is required. The results for this segment will

be placed in the last elements of the times and timeUnits arrays. If toSegmentIndex is less than

fromSegmentIndex then the driver will wrap around from the last segment to the first.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NOT_USED_IN_THIS_CAPTURE_MODE

PICO_NOT_RESPONDING

PICO_NULL_PARAMETER

PICO_DEVICE_SAMPLING

PICO_SEGMENT_OUT_OF_RANGE

PICO_NO_SAMPLES_AVAILABLE

PICO_DRIVER_FUNCTION

API functions54

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.25 ps2000aHoldOff() – not supported

PICO_STATUS ps2000aHoldOff

(

int16_t handle,

uint64_t holdoff,

PS2000A_HOLDOFF_TYPE type

)

This function has no effect and is reserved for future use.

Applicability Not supported. Reserved for future use.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

holdoff, reserved for future use.

type, reserved for future use.

Returns PICO_OK

PICO_INVALID_HANDLE

PicoScope 2000 Series (A API) Programmer's Guide 55

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.26 ps2000aIsReady() – poll driver in block mode

PICO_STATUS ps2000aIsReady

(

int16_t handle,

int16_t * ready

)

This function may be used instead of a callback function to receive data from ps2000aRunBlock(). To

use this method, pass a NULL pointer as the lpReady argument to ps2000aRunBlock(). You must then
poll the driver to see if it has finished collecting the requested samples.

Applicability Block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* ready, output: indicates the state of the collection. If zero, the device is still collecting. If non-zero, the

device has finished collecting and ps2000aGetValues() can be used to retrieve the data.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_CANCELLED

PICO_NOT_RESPONDING

API functions56

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.27 ps2000aIsTriggerOrPulseWidthQualifierEnabled() –
get trigger status

PICO_STATUS ps2000aIsTriggerOrPulseWidthQualifierEnabled

(

int16_t handle,

int16_t * triggerEnabled,

int16_t * pulseWidthQualifierEnabled

)

This function discovers whether a trigger, or pulse width triggering, is enabled.

Applicability Call after setting up the trigger, and just before calling either ps2000aRunBlock() or

ps2000aRunStreaming().

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* triggerEnabled, on exit, indicates whether the trigger will successfully be set when

ps2000aRunBlock() or ps2000aRunStreaming() is called. A non-zero value indicates that the trigger
is set, zero that the trigger is not set.

* pulseWidthQualifierEnabled, on exit, indicates whether the pulse width qualifier will successfully

be set when ps2000aRunBlock() or ps2000aRunStreaming() is called. A non-zero value indicates that
the pulse width qualifier is set, zero that the pulse width qualifier is not set.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 57

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.28 ps2000aMaximumValue() – get maximum ADC
count in GetValues calls

PICO_STATUS ps2000aMaximumValue

(

int16_t handle

int16_t * value

)

This function returns the maximum ADC count returned by calls to the GetValues functions.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* value, output: the maximum ADC value.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

PICO_DRIVER_FUNCTION

API functions58

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.29 ps2000aMemorySegments() – divide scope
memory into segments

PICO_STATUS ps2000aMemorySegments

(

int16_t handle

uint32_t nSegments,

int32_t * nMaxSamples

)

This function sets the number of memory segments that the scope will use.

When the scope is opened, the number of segments defaults to 1, meaning that each capture fills the
scope's available memory. This function allows you to divide the memory into a number of segments so that
the scope can store several waveforms sequentially.

Applicability Block mode, rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

nSegments, the number of segments required. Minimum: 1. Maximum: varies according to oscilloscope
model – refer to datasheet.

* nMaxSamples, on exit, the number of samples available in each segment. This is the total number over
all channels, so if two channels or 8-bit MSO ports are in use, the number of samples available to each

channel is nMaxSamples divided by 2; and for 3 or 4 channels or MSO ports divide by 4.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 59

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.30 ps2000aMinimumValue() – get minimum ADC count
in GetValues calls

PICO_STATUS ps2000aMinimumValue

(

int16_t handle

int16_t * value

)

This function returns the minimum ADC count returned by calls to the GetValues functions.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* value, output: the minimum ADC value.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_TOO_MANY_SEGMENTS

PICO_MEMORY

PICO_DRIVER_FUNCTION

API functions60

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.31 ps2000aNoOfStreamingValues() – get number of
samples in streaming mode

PICO_STATUS ps2000aNoOfStreamingValues

(

int16_t handle,

uint32_t * noOfValues

)

This function returns the number of raw samples stored in the driver after data collection in streaming

mode. Call it after calling ps2000aStop().

Applicability Streaming mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* noOfValues, on exit, the number of samples.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_NO_SAMPLES_AVAILABLE

PICO_NOT_USED

PICO_BUSY

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 61

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.32 ps2000aOpenUnit() – open a scope device

PICO_STATUS ps2000aOpenUnit

(

int16_t * handle,

int8_t * serial

)

This function opens a PicoScope 2000 Series (A API) scope attached to the computer. The maximum
number of units that can be opened depends on the operating system, the kernel driver and the computer.

Applicability All modes

Arguments

* handle, on exit, the result of the attempt to open a scope:

 –1 : if the scope fails to open

 0 : if no scope is found

> 0 : a number that uniquely identifies the scope
If a valid handle is returned, it must be used in all subsequent calls to API functions to identify this scope.

* serial, on entry, a null-terminated string containing the serial number of the scope to be opened. If

serial is NULL then the function opens the first scope found; otherwise, it tries to open the scope that
matches the string.

Returns PICO_OK

PICO_OS_NOT_SUPPORTED

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_EEPROM_CORRUPT

PICO_KERNEL_DRIVER_TOO_OLD

PICO_FPGA_FAIL

PICO_MEMORY_CLOCK_FREQUENCY

PICO_FW_FAIL

PICO_MAX_UNITS_OPENED

PICO_NOT_FOUND (if the specified unit was not found)

PICO_NOT_RESPONDING

PICO_MEMORY_FAIL

PICO_ANALOG_BOARD

PICO_CONFIG_FAIL_AWG

PICO_INITIALISE_FPGA

API functions62

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.33 ps2000aOpenUnitAsync() – open a scope device
without blocking

PICO_STATUS ps2000aOpenUnitAsync

(

int16_t * status

int8_t * serial

)

This function opens a scope without blocking the calling thread. You can find out when it has finished by

periodically calling ps2000aOpenUnitProgress() until that function returns a non-zero value.

Applicability All modes

Arguments

* status, a status code:
0 if the open operation was disallowed because another open operation is in progress
1 if the open operation was successfully started

* serial, see ps2000aOpenUnit().

Returns PICO_OK

PICO_OPEN_OPERATION_IN_PROGRESS

PICO_OPERATION_FAILED

PicoScope 2000 Series (A API) Programmer's Guide 63

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.34 ps2000aOpenUnitProgress() – check progress of
OpenUnit call

PICO_STATUS ps2000aOpenUnitProgress

(

int16_t * handle,

int16_t * progressPercent,

int16_t * complete

)

This function checks on the progress of a request made to ps2000aOpenUnitAsync() to open a scope.

Applicability Use after ps2000aOpenUnitAsync()

Arguments

* handle, see ps2000aOpenUnit(). This handle is valid only if the function returns PICO_OK.

* progressPercent, on exit, the percentage progress towards opening the scope. 100% implies that the
open operation is complete.

* complete, set to 1 when the open operation has finished.

Returns PICO_OK

PICO_NULL_PARAMETER

PICO_OPERATION_FAILED

API functions64

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.35 ps2000aPingUnit() – check communication with
opened device

PICO_STATUS ps2000aPingUnit

(

int16_t handle

)

This function can be used to check that the already opened device is still connected to the USB port and
communication is successful.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_BUSY

PICO_NOT_RESPONDING

PicoScope 2000 Series (A API) Programmer's Guide 65

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.36 ps2000aQueryOutputEdgeDetect() – find out if state
trigger edge-detection is enabled

PICO_STATUS ps2000aQueryOutputEdgeDetect

(

int16_t handle,

int16_t * state

)

This function obtains the state of the edge-detect flag, which is described in

ps2000aSetOutputEdgeDetect().

Applicability Level and window trigger types

Arguments

handle, device identifier returned by ps2000aOpenUnit().

state, on exit, the value of the edge-detect flag:

 0 : do not wait for a signal transition

<> 0 : wait for a signal transition (default)

Returns PICO_OK

API functions66

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.37 ps2000aRunBlock() – capture in block mode

PICO_STATUS ps2000aRunBlock

(

int16_t handle,

int32_t noOfPreTriggerSamples,

int32_t noOfPostTriggerSamples,

uint32_t timebase,

int16_t oversample,

int32_t * timeIndisposedMs,

uint32_t segmentIndex,

ps2000aBlockReady lpReady,

void * pParameter

)

This function starts collecting data in block mode. For a step-by-step guide to this process, see Using block
mode.

The number of samples is determined by noOfPreTriggerSamples and noOfPostTriggerSamples
(see below for details). The total number of samples must not be more than the size of the segment referred

to by segmentIndex.

Applicability Block mode, rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

noOfPreTriggerSamples, the number of samples to store before the trigger event

noOfPostTriggerSamples, the number of samples to store after the trigger event

Note: the maximum number of samples returned is always noOfPreTriggerSamples +

noOfPostTriggerSamples. This is true even if no trigger event has been set.

timebase, a number in the range 0 to 232–1. See the guide to calculating timebase values. This argument

is ignored in ETS mode, when ps2000aSetEts() selects the timebase instead.

oversample, not used

* timeIndisposedMs, on exit, the time, in milliseconds, that the scope will spend collecting samples.
This does not include any auto trigger timeout. It is not valid in ETS capture mode. The pointer can be set to
null if a value is not required.

segmentIndex, zero-based, which memory segment to use

lpReady, a pointer to the ps2000aBlockReady() callback function that the driver will call when the

data has been collected. To use the ps2000aIsReady() polling method instead of a callback function, set
this pointer to NULL.

* pParameter, a void pointer that is passed to the ps2000aBlockReady() callback function. The
callback can use this pointer to return arbitrary data to the application.

Returns PICO_OK

PICO_BUFFERS_NOT_SET (in Overlapped mode)

PicoScope 2000 Series (A API) Programmer's Guide 67

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_SEGMENT_OUT_OF_RANGE

PICO_INVALID_CHANNEL

PICO_INVALID_TRIGGER_CHANNEL

PICO_INVALID_CONDITION_CHANNEL

PICO_TOO_MANY_SAMPLES

PICO_INVALID_TIMEBASE

PICO_NOT_RESPONDING

PICO_CONFIG_FAIL

PICO_INVALID_PARAMETER

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_DRIVER_FUNCTION

PICO_FW_FAIL

PICO_NOT_ENOUGH_SEGMENTS (in Bulk mode)

PICO_PULSE_WIDTH_QUALIFIER

PICO_SEGMENT_OUT_OF_RANGE (in Overlapped mode)

PICO_STARTINDEX_INVALID (in Overlapped mode)

PICO_INVALID_SAMPLERATIO (in Overlapped mode)

PICO_CONFIG_FAIL

API functions68

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.38 ps2000aRunStreaming() – capture in streaming
mode

PICO_STATUS ps2000aRunStreaming

(

int16_t handle,

uint32_t * sampleInterval,

PS2000A_TIME_UNITS sampleIntervalTimeUnits

uint32_t maxPreTriggerSamples,

uint32_t maxPostTriggerSamples,

int16_t autoStop,

uint32_t downSampleRatio,

PS2000A_RATIO_MODE downSampleRatioMode,

uint32_t overviewBufferSize

)

This function tells the oscilloscope to start collecting data in streaming mode. When data has been
collected from the device it is downsampled if necessary and then delivered to the application. Call

ps2000aGetStreamingLatestValues() to retrieve the data. See Using streaming mode for a step-by-
step guide to this process.

The function always starts collecting data immediately, regardless of the trigger settings. Whether a trigger

is set or not, the total number of samples stored in the driver is always maxPreTriggerSamples +

maxPostTriggerSamples. If autoStop is false, the scope will collect data continuously using the buffer
as a first-in first-out (FIFO) memory.

Applicability Streaming mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* sampleInterval, on entry, the requested time interval between samples; on exit, the actual time
interval used.

sampleIntervalTimeUnits, the unit of time used for sampleInterval. Use one of these values:

PS2000A_FS

PS2000A_PS

PS2000A_NS

PS2000A_US

PS2000A_MS

PS2000A_S

maxPreTriggerSamples, the maximum number of raw samples before a trigger event for each enabled
channel.

maxPostTriggerSamples, the maximum number of raw samples after a trigger event for each enabled
channel.

autoStop, a flag that specifies if the streaming should stop when all of maxSamples =

maxPreTriggerSamples + maxPostTriggerSamples have been captured. This can only happen after
a trigger event.

downSampleRatio, see ps2000aGetValues()

downSampleRatioMode, see ps2000aGetValues()

PicoScope 2000 Series (A API) Programmer's Guide 69

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

overviewBufferSize, the size of the overview buffers. These are temporary buffers used for storing the

data before returning it to the application. The size is the same as the bufferLth value passed to

ps2000aSetDataBuffer().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_ETS_MODE_SET

PICO_USER_CALLBACK

PICO_NULL_PARAMETER

PICO_INVALID_PARAMETER

PICO_STREAMING_FAILED

PICO_NOT_RESPONDING

PICO_TRIGGER_ERROR

PICO_INVALID_SAMPLE_INTERVAL

PICO_INVALID_BUFFER

PICO_DRIVER_FUNCTION

PICO_FW_FAIL

PICO_MEMORY

API functions70

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.39 ps2000aSetChannel() – set up input channel

PICO_STATUS ps2000aSetChannel

(

int16_t handle,

PS2000A_CHANNEL channel,

int16_t enabled,

PS2000A_COUPLING type,

PS2000A_RANGE range,

float analogOffset

)

This function specifies whether an input channel is to be enabled, its input coupling type, voltage range,
analog offset.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

channel, the channel to be configured. The values are:

PS2000A_CHANNEL_A: Channel A input

PS2000A_CHANNEL_B: Channel B input

PS2000A_CHANNEL_C: Channel C input

PS2000A_CHANNEL_D: Channel D input

enabled, TRUE to enable the channel, FALSE to disable it.

type, the impedance and coupling type. The values are:

PS2000A_AC: 1 megohm impedance, AC coupling. The channel accepts input frequencies from
about 1 hertz up to its maximum analog bandwidth.

PS2000A_DC: 1 megohm impedance, DC coupling. The channel accepts all input frequencies from
zero (DC) up to its maximum analog bandwidth.

range, the input voltage range:

PS2000A_20MV: ±20 mV

PS2000A_50MV: ±50 mV

PS2000A_100MV: ±100 mV

PS2000A_200MV: ±200 mV

PS2000A_500MV: ±500 mV

PS2000A_1V: ±1 V

PS2000A_2V: ±2 V

PS2000A_5V: ±5 V

PS2000A_10V: ±10 V

PS2000A_20V: ±20 V

analogOffset, a voltage to add to the input channel before digitization. The allowable range of offsets

can be obtained from ps2000aGetAnalogueOffset() and depends on the input range selected for the
channel. This argument is ignored if the device is a PicoScope 2205 MSO.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_INVALID_VOLTAGE_RANGE

PICO_INVALID_COUPLING

PICO_INVALID_ANALOGUE_OFFSET

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 71

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.40 ps2000aSetDataBuffer() – register data buffer with
driver

PICO_STATUS ps2000aSetDataBuffer

(

int16_t handle,

int32_t channel,

int16_t * buffer,

int32_t bufferLth,

uint32_t segmentIndex,

PS2000A_RATIO_MODE mode

)

This function tells the driver where to store the data, either unprocessed or downsampled, that will be

returned after the next call to one of the ps2000aGetValues...() functions. The function only allows you
to specify a single buffer, so for aggregation mode, which requires two buffers, you need to call

ps2000aSetDataBuffers() instead.

You must allocate memory for the buffer before calling this function.

Applicability Block, rapid block and streaming modes. All downsampling modes except aggregation.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

channel, the channel you want to use with the buffer. Use one of these values:

PS2000A_CHANNEL_A

PS2000A_CHANNEL_B

PS2000A_CHANNEL_C

PS2000A_CHANNEL_D

PS2000A_DIGITAL_PORT0 = 0x80 (MSO models only)

PS2000A_DIGITAL_PORT1 = 0x81 (MSO models only)

buffer, pointer to the buffer. Each sample written to the buffer will be a 16-bit ADC count scaled
according to the selected voltage range.

bufferLth, the size of the buffer array

segmentIndex, the number of the memory segment to be used

mode, the downsampling mode. See ps2000aGetValues() for the available modes, but note that a

single call to ps2000aSetDataBuffer() can only associate one buffer with one downsampling mode. If

you intend to call ps2000aGetValues() with more than one downsampling mode activated, then you

must call ps2000aSetDataBuffer() several times to associate a separate buffer with each
downsampling mode.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_SEGMENT_OUT_OF_RANGE

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

API functions72

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.41 ps2000aSetDataBuffers() – register aggregated
data buffers with driver

PICO_STATUS ps2000aSetDataBuffers

(

int16_t handle,

int32_t channel,

int16_t * bufferMax,

int16_t * bufferMin,

int32_t bufferLth,

uint32_t segmentIndex,

PS2000A_RATIO_MODE mode

)

This function tells the driver the location of one or two buffers for receiving data. You need to allocate
memory for the buffers before calling this function. If you do not need two buffers because you are not

using aggregate mode, you can optionally use ps2000aSetDataBuffer() instead.

Applicability Block and streaming modes with aggregation.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

channel, the channel for which you want to set the buffers. Use one of these constants:

PS2000A_CHANNEL_A

PS2000A_CHANNEL_B

PS2000A_CHANNEL_C

PS2000A_CHANNEL_D

PS2000A_DIGITAL_PORT0 = 0x80 (MSO models only)

PS2000A_DIGITAL_PORT1 = 0x81 (MSO models only)

bufferMax, a user-allocated buffer to receive the maximum data values in aggregation mode, or the non-
aggregated values otherwise. Each value is a 16-bit ADC count scaled according to the selected voltage
range.

bufferMin, a user-allocated buffer to receive the minimum data values in aggregation mode. Not
normally used in other modes, but you can direct the driver to write non-aggregated values to this buffer by

setting bufferMax to NULL. To enable aggregation, the downsampling ratio and mode must be set

appropriately when calling one of the ps2000aGetValues...() functions.

bufferLth, the size of the bufferMax and bufferMin arrays.

segmentIndex, the number of the memory segment to be used.

mode, see ps2000aGetValues().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_SEGMENT_OUT_OF_RANGE

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

PicoScope 2000 Series (A API) Programmer's Guide 73

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.42 ps2000aSetDigitalAnalogTriggerOperand() – set up
combined analog/digital trigger

PICO_STATUS ps2000aSetDigitalAnalogTriggerOperand

(

int16_t handle,

PS2000A_TRIGGER_OPERAND operand

)

Mixed-signal (MSO) models in this series have two independent triggers, one for the analog input channels
and another for the digital inputs. This function defines how the two triggers are combined.

Applicability MSO models only

Arguments

handle, device identifier returned by ps2000aOpenUnit().

operand, one of the following constants:

PS2000A_OPERAND_NONE, ignore the trigger settings

PS2000A_OPERAND_OR, fire when either trigger is activated

PS2000A_OPERAND_AND, fire when both triggers are activated

PS2000A_OPERAND_THEN, fire when one trigger is activated followed by the other

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_NOT_USED

PICO_INVALID_PARAMETER

API functions74

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.43 ps2000aSetDigitalPort() – set up digital input

PICO_STATUS ps2000aSetDigitalPort

(

int16_t handle,

PS2000A_DIGITAL_PORT port,

int16_t enabled,

int16_t logiclevel

)

This function is used to enable the digital ports of an MSO and set the logic level (the voltage point at which
the state transitions from 0 to 1).

Applicability MSO devices only.
Block and streaming modes with aggregation.
Not compatible with ETS mode.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

port, the digital port to be configured:

PS2000A_DIGITAL_PORT0 = 0x80 (D0 to D7)

PS2000A_DIGITAL_PORT1 = 0x81 (D8 to D15)

enabled, whether or not to enable the port. Enabling a digital port allows the scope to collect data from
the port and to trigger on the port. Enabling a digital port may also increase the memory usage of the scope
(see Block mode). The values are:

TRUE: enable

FALSE: do not enable

logiclevel, the logic threshold voltage
Range: –32767 (–5 V) to 32767 (+5 V).

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_CHANNEL

PICO_RATIO_MODE_NOT_SUPPORTED

PICO_SEGMENT_OUT_OF_RANGE

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

PicoScope 2000 Series (A API) Programmer's Guide 75

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.44 ps2000aSetEts() – set up equivalent-time sampling

PICO_STATUS ps2000aSetEts

(

int16_t handle,

PS2000A_ETS_MODE mode,

int16_t etsCycles,

int16_t etsInterleave,

int32_t * sampleTimePicoseconds

)

This function is used to enable or disable ETS (equivalent-time sampling) and to set the ETS parameters.
See ETS overview for an explanation of ETS mode.

Applicability Block mode only.
On MSOs, ETS mode not available when digital port(s) enabled.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

mode, the ETS mode. Use one of these values:

PS2000A_ETS_OFF: disables ETS

PS2000A_ETS_FAST: enables ETS and provides etsCycles of data, which may contain data
from previously returned cycles

PS2000A_ETS_SLOW: enables ETS and provides fresh data every etsCycles. This mode takes
longer to provide each data set, but the data sets are more stable and are
guaranteed to contain only new data.

etsCycles, the number of cycles to store. The computer can then select etsInterleave cycles to give
the most uniform spread of samples. Maximum values are:

500 for the PicoScope 2206B, 2206B MSO, 2207B, 2207B MSO, 2208B, 2208B MSO, 2405A, 2406B,
2407B, 2408B

PS2206_MAX_ETS_CYCLES for the PicoScope 2206, 2206A

PS2207_MAX_ETS_CYCLES for the PicoScope 2207, 2207A

PS2208_MAX_ETS_CYCLES for the PicoScope 2208, 2208A

etsInterleave, the number of waveforms to combine into a single ETS capture. Maximum values are:

40 for the PicoScope 2206B, 2206B MSO, 2207B, 2207B MSO, 2208B, 2208B MSO, 2405A, 2406B, 2407B,
2408B

PS2206_MAX_INTERLEAVE for the PicoScope 2206, 2206A

PS2207_MAX_INTERLEAVE for the PicoScope 2207, 2207A

PS2208_MAX_INTERLEAVE for the PicoScope 2208, 2208A

* sampleTimePicoseconds, on exit, the effective sampling interval of the ETS data. For example, if the

captured sample time is 4 ns and etsInterleave is 10, then the effective sample time in ETS mode is
400 ps.

Returns PICO_OK

PICO_USER_CALLBACK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

API functions76

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.45 ps2000aSetEtsTimeBuffer() – set up 64-bit buffer
for ETS timings

PICO_STATUS ps2000aSetEtsTimeBuffer

(

int16_t handle,

int64_t * buffer,

int32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These buffers contain the 64-
bit timing information for each ETS sample after you run a block-mode ETS capture.

Applicability ETS mode only.

If your programming language does not support 64-bit data, use the 32-bit version

ps2000aSetEtsTimeBuffers() instead.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* buffer, an array of 64-bit words, each representing the time in femtoseconds (10–15 s) at which the
sample was captured.

bufferLth, the size of the buffer array.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 77

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.46 ps2000aSetEtsTimeBuffers() – set up 32-bit buffers
for ETS timings

PICO_STATUS ps2000aSetEtsTimeBuffers

(

int16_t handle,

uint32_t * timeUpper,

uint32_t * timeLower,

int32_t bufferLth

)

This function tells the driver where to find your application's ETS time buffers. These buffers contain the
timing information for each ETS sample after you run a block-mode ETS capture. There are two buffers
containing the upper and lower 32-bit parts of the timing information, to allow programming languages that
do not support 64-bit data to retrieve the timings.

Applicability ETS mode only.

If your programming language supports 64-bit data then you can use

ps2000aSetEtsTimeBuffer() instead.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* timeUpper, an array of 32-bit words, each representing the upper 32 bits of the time in femtoseconds

(10–15 s) at which the sample was captured

* timeLower, an array of 32-bit words, each representing the lower 32 bits of the time in femtoseconds

(10–15 s) at which the sample was captured

bufferLth, the size of the timeUpper and timeLower arrays.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NULL_PARAMETER

PICO_DRIVER_FUNCTION

API functions78

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.47 ps2000aSetNoOfCaptures() – set number of
captures to collect in one run

PICO_STATUS ps2000aSetNoOfCaptures

(

int16_t handle,

uint32_t nCaptures

)

This function sets the number of captures to be collected in one run of rapid block mode. If you do not call
this function before a run, the driver will capture only one waveform. Once a value has been set, the value
remains constant unless changed.

Applicability Rapid block mode

Arguments

handle, device identifier returned by ps2000aOpenUnit().

nCaptures, the number of waveforms to capture in one run.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_INVALID_PARAMETER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 79

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.48 ps2000aSetOutputEdgeDetect() – enable or disable
state trigger edge-detection

PICO_STATUS ps2000aSetOutputEdgeDetect

(

int16_t handle,

int16_t state

)

This function tells the device whether or not to wait for an edge on the trigger input when one of the 'level' or
'window' trigger types is in use. By default the device waits for an edge on the trigger input before firing the
trigger. If you switch off edge detect mode, the device will trigger continually for as long as the trigger input
remains in the specified state.

You can query the state of this flag by calling ps2000aQueryOutputEdgeDetect().

Applicability Level and window trigger types

Arguments

handle, device identifier returned by ps2000aOpenUnit().

state, a flag that specifies the trigger behavior:

 0 : do not wait for a signal transition

<> 0 : wait for a signal transition (default)

Returns PICO_OK

API functions80

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.49 ps2000aSetPulseWidthDigitalPortProperties() – set
pulse-width triggering on digital inputs

PICO_STATUS ps2000aSetPulseWidthDigitalPortProperties

(

int16_t handle,

PS2000A_DIGITAL_CHANNEL_DIRECTIONS * directions

int16_t nDirections

)

This function will set the individual digital channels' pulse-width trigger directions. Each trigger direction
consists of a channel name and a direction. If the channel is not included in the array of

PS2000A_DIGITAL_CHANNEL_DIRECTIONS the driver assumes the digital channel's pulse-width trigger

direction is PS2000A_DIGITAL_DONT_CARE.

Applicability All modes.
MSO models only.

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* directions, a pointer to an array of PS2000A_DIGITAL_CHANNEL_DIRECTIONS structures
describing the requested properties. The array can contain a single element describing the properties of one

channel, or a number of elements describing several digital channels. If directions is NULL, digital pulse-
width triggering is switched off. A digital channel that is not included in the array will be set to

PS2000A_DIGITAL_DONT_CARE.

nDirections, the number of digital channel directions being passed to the driver.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_DIGITAL_CHANNEL

PICO_INVALID_DIGITAL_TRIGGER_DIRECTION

PicoScope 2000 Series (A API) Programmer's Guide 81

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.50 ps2000aSetPulseWidthQualifier() – set up pulse
width triggering

PICO_STATUS ps2000aSetPulseWidthQualifier

(

int16_t handle,

PS2000A_PWQ_CONDITIONS * conditions,

int16_t nConditions,

PS2000A_THRESHOLD_DIRECTION direction,

uint32_t lower,

uint32_t upper,

PS2000A_PULSE_WIDTH_TYPE type

)

This function sets up pulse-width qualification, which can be used on its own for pulse-width triggering or
combined with threshold triggering, level triggering or window triggering to produce more complex triggers.
The pulse-width qualifier is set by defining one or more structures that are then ORed together. Each
structure is itself the AND of the states of one or more of the inputs. This AND-OR logic allows you to create
any possible Boolean function of the scope's inputs.

Note: The oscilloscope contains a single pulse-width counter. It is possible to include multiple channels in a
pulse-width qualifier but the same pulse-width counter will apply to all of them. The counter starts when your
selected trigger condition occurs, and the scope then triggers if the trigger condition ends after a time that
satisfies the pulse-width condition.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* conditions, an array of PS2000A_PWQ_CONDITIONS structures specifying the conditions that should
be applied to each channel. In the simplest case, the array consists of a single element. When there are
several elements, the overall trigger condition is the logical OR of all the elements. Since each element can
combine a number of input conditions using AND logic, this AND-OR logic enables you to create a qualifier

based on any possible Boolean function of the inputs. If conditions is NULL, the pulse-width qualifier is
not used.

nConditions, the number of elements in the conditions array. If nConditions is zero then the
pulse-width qualifier is not used.

Range: 0 to PS2000A_MAX_PULSE_WIDTH_QUALIFIER_COUNT.

direction, the direction of the signal required for the pulse width trigger to fire. See

PS2000A_THRESHOLD_DIRECTION constants for the list of possible values. Each channel of the
oscilloscope (except the EXT input, if present) has two thresholds for each direction—for example,

PS2000A_RISING and PS2000A_RISING_LOWER— so that one can be used for the pulse-width qualifier
and the other for the level trigger. The driver will not let you use the same threshold for both triggers; so, for

example, you cannot use PS2000A_RISING as the direction argument for both

ps2000aSetTriggerConditions() and ps2000aSetPulseWidthQualifier() at the same time.
There is no such restriction when using window triggers.

lower, the lower limit of the pulse-width counter, measured in sample periods

upper, the upper limit of the pulse-width counter, measured in sample periods. This parameter is used

only when the type is set to PS2000A_PW_TYPE_IN_RANGE or PS2000A_PW_TYPE_OUT_OF_RANGE.

API functions82

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

type, the pulse-width type, one of these constants:

PS2000A_PW_TYPE_NONE: do not use the pulse width qualifier

PS2000A_PW_TYPE_LESS_THAN: pulse width less than lower

PS2000A_PW_TYPE_GREATER_THAN: pulse width greater than lower

PS2000A_PW_TYPE_IN_RANGE: pulse width between lower and upper

PS2000A_PW_TYPE_OUT_OF_RANGE: pulse width not between lower and upper

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_PULSE_WIDTH_QUALIFIER

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 83

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.50.1 PS2000A_PWQ_CONDITIONS structure

A structure of this type is passed to ps2000aSetPulseWidthQualifier() in the conditions
argument to specify a set of trigger conditions. It is defined as follows:

typedef struct tPS2000APwqConditions

{

PS2000A_TRIGGER_STATE channelA;

PS2000A_TRIGGER_STATE channelB;

PS2000A_TRIGGER_STATE channelC;

PS2000A_TRIGGER_STATE channelD;

PS2000A_TRIGGER_STATE external;

PS2000A_TRIGGER_STATE aux;

PS2000A_TRIGGER_STATE digital;

} PS2000A_PWQ_CONDITIONS

A structure of this type is passed to ps2000aSetPulseWidthQualifier in the conditions argument to specify
the pulse-width qualifier conditions for all the trigger sources. Each structure is the logical AND of the states
of the scope's inputs. The ps2000aSetPulseWidthQualifier function can OR together a number of these
structures to produce the final pulse width qualifier, which can therefore be any possible Boolean function of
the scope's inputs.

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channelA, channelB, channelC, channelD, external: the type of condition that should be
applied to each channel. Use these constants:

PS2000A_CONDITION_DONT_CARE

PS2000A_CONDITION_TRUE

PS2000A_CONDITION_FALSE

The channels that are set to PS2000A_CONDITION_TRUE or PS2000A_CONDITION_FALSE must all
meet their conditions simultaneously to produce a trigger. Channels set to

PS2000A_CONDITION_DONT_CARE are ignored.

aux, digital: not used.

API functions84

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.51 ps2000aSetSigGenArbitrary() – set up arbitrary
waveform generator

PICO_STATUS ps2000aSetSigGenArbitrary

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

int16_t * arbitraryWaveform,

int32_t arbitraryWaveformSize,

PS2000A_SWEEP_TYPE sweepType,

PS2000A_EXTRA_OPERATIONS operation,

PS2000A_INDEX_MODE indexMode,

uint32_t shots,

uint32_t sweeps,

PS2000A_SIGGEN_TRIG_TYPE triggerType,

PS2000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function programs the signal generator to produce an arbitrary waveform.

The arbitrary waveform generator uses direct digital synthesis (DDS). It maintains a 32-bit phase
accumulator that indicates the present location in the waveform. The top bits of the phase accumulator are
used as an index into a buffer containing the arbitrary waveform. The remaining bits act as the fractional
part of the index, enabling high-resolution control of output frequency and allowing the generation of lower
frequencies.

The phase accumulator initially increments by startDeltaPhase. If the AWG is set to sweep mode, the

phase increment is increased at specified intervals until it reaches stopDeltaPhase. The easiest way to

obtain the values of startDeltaPhase and stopDeltaPhase necessary to generate the desired

frequency is to call ps2000aSigGenFrequencyToPhase(). Alternatively, see Calculating deltaPhase
below for more information on how to calculate these values.

Set up the signal generator before starting data acquisition, particularly if you require it to be triggered during
data acquisition.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

startDeltaPhase, the initial value added to the phase accumulator as the generator begins to step

through the waveform buffer. Calculate this value from the information above, or use

ps2000aSigGenFrequencyToPhase().

PicoScope 2000 Series (A API) Programmer's Guide 85

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

stopDeltaPhase, the final value added to the phase accumulator before the generator restarts or

reverses the sweep. When frequency sweeping is not required, set equal to startDeltaPhase.

deltaPhaseIncrement, the amount added to the delta phase value every time the dwellCount period
expires. This determines the amount by which the generator sweeps the output frequency in each dwell
period. When frequency sweeping is not required, set to zero.

dwellCount, the time, in multiples of ddsPeriod, between successive additions of

deltaPhaseIncrement to the delta phase accumulator. This determines the rate at which the generator
sweeps the output frequency.

Minimum value: PS2000A_MIN_DWELL_COUNT

* arbitraryWaveform, a buffer that holds the waveform pattern as a set of samples equally spaced in
time. Each sample is scaled to an output voltage as follows:

vOUT = 1 µV × (pkToPk / 2) × (sample_value / 32767) + offsetVoltage

and clipped to the overall ±2 V range of the AWG.

arbitraryWaveformSize, the size of the arbitrary waveform buffer, in samples, in the range:

[minArbitraryWaveformSize, maxArbitraryWaveformSize]

where minArbitraryWaveformSize and maxArbitraryWaveformSize are the values returned

by ps2000aSigGenArbitraryMinMaxValues().

sweepType, determines whether the startDeltaPhase is swept up to the stopDeltaPhase, or
down to it, or repeatedly swept up and down. Use one of these values:

PS2000A_UP

PS2000A_DOWN

PS2000A_UPDOWN

PS2000A_DOWNUP

operation, the type of waveform to be produced, specified by one of the following enumerated types:

PS2000A_ES_OFF, normal AWG operation using the waveform buffer.

PS2000A_WHITENOISE, the signal generator produces white noise and ignores all settings except

offsetVoltage and pkToPk.

PS2000A_PRBS, produces a random bitstream with a bit rate specified by the phase accumulator.

indexMode, specifies how the signal will be formed from the arbitrary waveform data. Single and dual
index modes are possible. Use one of these constants:

PS2000A_SINGLE

PS2000A_DUAL

shots,

0: sweep the frequency as specified by sweeps

1...PS2000A_MAX_SWEEPS_SHOTS: the number of cycles of the waveform to be produced after a

trigger event. sweeps must be zero.

PS2000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start and run continuously after trigger occurs
(not PicoScope 2205 MSO)

sweeps,

0: produce number of cycles specified by shots

1..PS2000A_MAX_SWEEPS_SHOTS: the number of times to sweep the frequency after a trigger event,

according to sweepType. shots must be zero.

PS2000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN: start a sweep and continue after trigger occurs
(not PicoScope 2205 MSO)

API functions86

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

triggerType, the type of trigger that will be applied to the signal generator:

PS2000A_SIGGEN_RISING trigger on rising edge

PS2000A_SIGGEN_FALLING trigger on falling edge

PS2000A_SIGGEN_GATE_HIGH run while trigger is high

PS2000A_SIGGEN_GATE_LOW run while trigger is low

A trigger event causes the signal generator to produce the specified number of shots or sweeps.

triggerSource, the source that will trigger the signal generator:

PS2000A_SIGGEN_NONE run without waiting for trigger

PS2000A_SIGGEN_SCOPE_TRIG use scope trigger

PS2000A_SIGGEN_EXT_IN use EXT input (if available)

PS2000A_SIGGEN_SOFT_TRIG wait for software trigger provided by

ps2000aSigGenSoftwareControl()

PS2000A_SIGGEN_TRIGGER_RAW reserved

When triggering is enabled (trigger source set to something other than P2000A_SIGGEN_NONE), either

shots or sweeps, but not both, must be non-zero.

extInThreshold, trigger level, in ADC counts, for external trigger.

Returns PICO_OK

PICO_AWG_NOT_SUPPORTED

PICO_BUSY

PICO_INVALID_HANDLE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

PICO_NOT_RESPONDING

PICO_WARNING_EXT_THRESHOLD_CONFLICT

PICO_NO_SIGNAL_GENERATOR

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_DRIVER_FUNCTION

PICO_SIGGEN_WAVEFORM_SETUP_FAILED

PicoScope 2000 Series (A API) Programmer's Guide 87

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.51.1 AWG index modes

The arbitrary waveform generator supports single and dual index modes to help you make the best use of
the waveform buffer.

Single mode. The generator outputs the raw contents
of the buffer repeatedly. This mode is the only one
that can generate asymmetrical waveforms. You can
also use this mode for symmetrical waveforms but
the dual mode makes more efficient use of the buffer
memory.

Dual mode. The generator outputs the contents of
the buffer from beginning to end, and then does a
second pass in the reverse direction through the
buffer. This allows you to specify only the first half of
a waveform with twofold symmetry, such as a
Gaussian function, and let the generator fill in the
other half.

API functions88

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.51.2 Calculating deltaPhase

The arbitrary waveform generator (AWG) steps through the waveform buffer by adding a deltaPhase value
between 1 and phaseAccumulatorSize-1 to the phase accumulator every ddsPeriod (1/ddsFrequency). If the
deltaPhase is constant, the generator produces a waveform at a constant frequency that can be calculated
as follows:

() ()outputFrequency = ddsFrequency ×
deltaPhase

phaseAccumulatorSize
×

awgBufferSize
arbitraryWaveformSize

where:

· outputFrequency = repetition rate of the complete arbitrary waveform

· ddsFrequency = update rate of DDS counter for each model

· deltaPhase = calculated from startDeltaPhase and deltaPhaseIncrement (we recommend
that you use ps2000aSigGenFrequencyToPhase() to calculate deltaPhase)

· phaseAccumulatorSize = 232 for all models

· awgBufferSize = AWG buffer size for each model

· arbitraryWaveformSize = length in samples of the user-defined waveform

It is also possible to sweep the frequency by continually modifying the deltaPhase. This is done by setting up

a deltaPhaseIncrement that the oscilloscope adds to the deltaPhase at intervals specified by

dwellCount.

Parameter PicoScope
2205 MSO

PicoScope
2205A MSO
2206/2206A
2207/2207A
2208/2208A

2405A

PicoScope
2206B/2206B MSO
2207B/2207B MSO
2208B/2208B MSO

2406B
2407B
2408B

phaseAccumulatorSize 232 232 232

ddsFrequency 48 MHz 20 MHz 20 MHz

awgBufferSize 8192 samples 8192 samples 32 768 samples

ddsPeriod (= 1/ddsFrequency) 20.83 ns 50 ns 50 ns

PicoScope 2000 Series (A API) Programmer's Guide 89

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.52 ps2000aSetSigGenBuiltIn() – set up standard signal
generator

PICO_STATUS ps2000aSetSigGenBuiltIn

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk

int16_t waveType

float startFrequency,

float stopFrequency,

float increment,

float dwellTime,

PS2000A_SWEEP_TYPE sweepType,

PS2000A_EXTRA_OPERATIONS operation,

uint32_t shots,

uint32_t sweeps,

PS2000A_SIGGEN_TRIG_TYPE triggerType,

PS2000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function sets up the signal generator to produce a signal from a list of built-in waveforms. If different
start and stop frequencies are specified, the device will sweep either up, down, or up and down.

Set up the signal generator before starting data acquisition, particularly if you require it to be triggered during
data acquisition.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

offsetVoltage, the voltage offset, in microvolts, to be applied to the waveform

pkToPk, the peak-to-peak voltage, in microvolts, of the waveform signal

Note: if the signal voltages described by the combination of offsetVoltage and pkToPk extend outside
the voltage range of the signal generator, the output waveform will be clipped.

waveType, the type of waveform to be generated:

PS2000A_SINE sine wave

PS2000A_SQUARE square wave

PS2000A_TRIANGLE triangle wave

PS2000A_DC_VOLTAGE DC voltage

PS2000A_RAMP_UP rising sawtooth

PS2000A_RAMP_DOWN falling sawtooth

PS2000A_SINC sin(x)/x

PS2000A_GAUSSIAN Gaussian

PS2000A_HALF_SINE half (full-wave rectified) sine

startFrequency, the frequency that the signal generator will initially produce. Allowable values are
between one of these constants:

PS2000A_MIN_FREQUENCY

API functions90

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

PS2000A_PRBS_MIN_FREQUENCY

and one of these constants:

PS2000A_SINE_MAX_FREQUENCY

PS2000A_SQUARE_MAX_FREQUENCY

PS2000A_TRIANGLE_MAX_FREQUENCY

PS2000A_SINC_MAX_FREQUENCY

PS2000A_RAMP_MAX_FREQUENCY

PS2000A_HALF_SINE_MAX_FREQUENCY

PS2000A_GAUSSIAN_MAX_FREQUENCY

PS2000A_PRBS_MAX_FREQUENCY

depending on the signal type.

stopFrequency, the frequency at which the sweep reverses direction or returns to the initial frequency

increment, the amount of frequency increase or decrease in sweep mode

dwellTime, the time for which the sweep stays at each frequency, in seconds

sweepType, whether the frequency will sweep from startFrequency to stopFrequency, or in the
opposite direction, or repeatedly reverse direction. Use one of these constants:

PS2000A_UP

PS2000A_DOWN

PS2000A_UPDOWN

PS2000A_DOWNUP

operation, the type of waveform to be produced, specified by one of the following enumerated types:

PS2000A_ES_OFF, normal signal generator operation specified by waveType.

PS2000A_WHITENOISE, the signal generator produces white noise and ignores all settings except

pkToPk and offsetVoltage.

PS2000A_PRBS, produces a pseudorandom binary sequence at the specified frequency or frequency
range (not available on PicoScope 2205 MSO).

shots, see ps2000aSigGenArbitrary()

sweeps, see ps2000aSigGenArbitrary()

triggerType, see ps2000aSigGenArbitrary()

triggerSource, see ps2000aSigGenArbitrary()

extInThreshold, see ps2000aSigGenArbitrary()

Returns PICO_OK

PICO_BUSY

PICO_INVALID_HANDLE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

PICO_NOT_RESPONDING

PICO_WARNING_AUX_OUTPUT_CONFLICT

PICO_WARNING_EXT_THRESHOLD_CONFLICT

PICO_NO_SIGNAL_GENERATOR

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_DRIVER_FUNCTION

PICO_SIGGEN_WAVEFORM_SETUP_FAILED

PicoScope 2000 Series (A API) Programmer's Guide 91

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

PICO_NOT_RESPONDING

API functions92

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.53 ps2000aSetSigGenBuiltInV2() – double-precision
signal generator setup

PICO_STATUS ps2000aSetSigGenBuiltInV2

(

int16_t handle,

int32_t offsetVoltage,

uint32_t pkToPk

int16_t waveType

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS2000_SWEEP_TYPE sweepType,

PS2000_EXTRA_OPERATIONS operation,

uint32_t shots,

uint32_t sweeps,

PS2000_SIGGEN_TRIG_TYPE triggerType,

PS2000_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function sets up the signal generator. It differs from ps2000aSetSigGenBuiltIn() in having
double-precision arguments instead of floats, giving greater resolution when setting the output frequency.

Applicability All modes

Arguments

See ps2000aSetSigGenBuiltIn()

Returns See ps2000aSetSigGenBuiltIn()

PicoScope 2000 Series (A API) Programmer's Guide 93

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.54 ps2000aSetSigGenPropertiesArbitrary() – change
AWG properties

PICO_STATUS ps2000aSetSigGenPropertiesArbitrary

(

int16_t handle,

uint32_t startDeltaPhase,

uint32_t stopDeltaPhase,

uint32_t deltaPhaseIncrement,

uint32_t dwellCount,

PS2000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS2000A_SIGGEN_TRIG_TYPE triggerType,

PS2000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the arbitrary waveform generator. All values can be reprogrammed while the
signal generator is waiting for a trigger.

Applicability All modes

Arguments

See ps2000aSetSigGenArbitrary().

Returns PICO_OK if successful

PICO_INVALID_HANDLE

PICO_NO_SIGNAL_GENERATOR

PICO_DRIVER_FUNCTION

PICO_AWG_NOT_SUPPORTED

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

PICO_WARNING_EXT_THRESHOLD_CONFLICT

PICO_BUSY

PICO_SIGGEN_WAVEFORM_SETUP_FAILED

PICO_NOT_RESPONDING

API functions94

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.55 ps2000aSetSigGenPropertiesBuiltIn() – change
standard signal generator properties

PICO_STATUS ps2000aSetSigGenPropertiesBuiltIn

(

int16_t handle,

double startFrequency,

double stopFrequency,

double increment,

double dwellTime,

PS2000A_SWEEP_TYPE sweepType,

uint32_t shots,

uint32_t sweeps,

PS2000A_SIGGEN_TRIG_TYPE triggerType,

PS2000A_SIGGEN_TRIG_SOURCE triggerSource,

int16_t extInThreshold

)

This function reprograms the signal generator. Values can be changed while the signal generator is waiting
for a trigger.

Applicability All modes

Arguments

See ps2000aSetSigGenBuiltIn().

Returns PICO_OK if successful

PICO_INVALID_HANDLE

PICO_NO_SIGNAL_GENERATOR

PICO_DRIVER_FUNCTION

PICO_WARNING_EXT_THRESHOLD_CONFLICT

PICO_SIGGEN_OFFSET_VOLTAGE

PICO_SIGGEN_PK_TO_PK

PICO_SIGGEN_OUTPUT_OVER_VOLTAGE

PICO_SIG_GEN_PARAM

PICO_SHOTS_SWEEPS_WARNING

PICO_WARNING_EXT_THRESHOLD_CONFLICT

PICO_BUSY

PICO_SIGGEN_WAVEFORM_SETUP_FAILED

PICO_NOT_RESPONDING

PicoScope 2000 Series (A API) Programmer's Guide 95

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.56 ps2000aSetSimpleTrigger() – set up level triggers

PICO_STATUS ps2000aSetSimpleTrigger

(

int16_t handle,

int16_t enable,

PS2000A_CHANNEL source,

int16_t threshold,

PS2000A_THRESHOLD_DIRECTION direction,

uint32_t delay,

int16_t autoTrigger_ms

)

This function simplifies arming the trigger. It supports only the LEVEL trigger types on analog channels, and
does not allow more than one channel to have a trigger applied to it. Any previous pulse width qualifier is
canceled. The trigger threshold includes a small, fixed amount of hysteresis.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

enable, zero to disable the trigger; any non-zero value to set the trigger.

source, the channel on which to trigger.

threshold, the ADC count at which the trigger will fire.

direction, the direction in which the signal must move to cause a trigger. The following directions are

supported: ABOVE, BELOW, RISING, FALLING and RISING_OR_FALLING.

delay, the time between the trigger occurring and the first sample being taken. For example, if

delay=100, the scope would wait 100 sample periods before sampling.

autoTrigger_ms, the number of milliseconds the device will wait if no trigger occurs. If this is set to zero,
the scope device will wait indefinitely for a trigger.

Returns PICO_OK

PICO_INVALID_CHANNEL

PICO_INVALID_PARAMETER

PICO_MEMORY

PICO_CONDITIONS

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions96

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.57 ps2000aSetTriggerChannelConditions() – specify
which channels to trigger on

PICO_STATUS ps2000aSetTriggerChannelConditions

(

int16_t handle,

PS2000A_TRIGGER_CONDITIONS * conditions,

int16_t nConditions

)

This function sets up trigger conditions on the scope's analog and digital inputs. The trigger is defined by

one or more PS2000A_TRIGGER_CONDITIONS structures that are then ORed together. Each structure is
itself the AND of the states of one or more of the inputs. This AND–OR logic allows you to create any
possible Boolean function of the scope's inputs. (The 16 digital inputs of an MSO count as a unit for the
purposes of this function.)

If complex triggering is not required, use ps2000aSetSimpleTrigger().

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* conditions, an array of PS2000A_TRIGGER_CONDITIONS structures specifying the conditions that
should be applied to each channel. In the simplest case, the array consists of a single element. When there
is more than one element, the overall trigger condition is the logical OR of all the elements.

nConditions, the number of elements in the conditions array. If nConditions is zero, triggering is
switched off.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_CONDITIONS

PICO_MEMORY

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 97

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.57.1 PS2000A_TRIGGER_CONDITIONS structure

A structure of this type is passed to ps2000aSetTriggerChannelConditions() in the conditions
argument to specify the trigger conditions, and is defined as follows:

typedef struct tPS2000ATriggerConditions

{

PS2000A_TRIGGER_STATE channelA;

PS2000A_TRIGGER_STATE channelB;

PS2000A_TRIGGER_STATE channelC;

PS2000A_TRIGGER_STATE channelD;

PS2000A_TRIGGER_STATE external;

PS2000A_TRIGGER_STATE aux;

PS2000A_TRIGGER_STATE pulseWidthQualifier;

PS2000A_TRIGGER_STATE digital;

} PS2000A_TRIGGER_CONDITIONS

Each structure is the logical AND of the states of the scope's inputs. The

ps2000aSetTriggerChannelConditions() function can OR together a number of these structures to
produce the final trigger condition, which can be any possible Boolean function of the scope's inputs. (The
16 digital inputs of an MSO count as a unit for the purposes of this function.)

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Elements

channelA, channelB, channelC, channelD, external, pulseWidthQualifier, digital:
the type of condition that should be applied to each channel. Use these constants:

PS2000A_CONDITION_DONT_CARE

PS2000A_CONDITION_TRUE

PS2000A_CONDITION_FALSE

The channels that are set to PS2000A_CONDITION_TRUE or PS2000A_CONDITION_FALSE must all
meet their conditions simultaneously to produce a trigger. Channels set to

PS2000A_CONDITION_DONT_CARE are ignored.

aux: not used.

API functions98

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.58 ps2000aSetTriggerChannelDirections() – set up
signal polarities for triggering

PICO_STATUS ps2000aSetTriggerChannelDirections

(

int16_t handle,

PS2000A_THRESHOLD_DIRECTION channelA,

PS2000A_THRESHOLD_DIRECTION channelB,

PS2000A_THRESHOLD_DIRECTION channelC,

PS2000A_THRESHOLD_DIRECTION channelD,

PS2000A_THRESHOLD_DIRECTION ext,

PS2000A_THRESHOLD_DIRECTION aux

)

This function sets the direction of the trigger for each channel.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

channelA, channelB, channelC, channelD, ext, the direction in which the signal must pass
through the threshold to activate the trigger. See the table below for allowable values. If using a level trigger

in conjunction with a pulse-width trigger, see the description of the direction argument to

ps2000aSetPulseWidthQualifier() for more information.

aux: not used.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_INVALID_PARAMETER

PS2000A_THRESHOLD_DIRECTION constants

Constant Trigger type Direction

PS2000A_ABOVE gated above the upper threshold

PS2000A_ABOVE_LOWER gated above the lower threshold

PS2000A_BELOW gated below the upper threshold

PS2000A_BELOW_LOWER gated below the lower threshold

PS2000A_RISING threshold rising edge, using upper threshold

PS2000A_RISING_LOWER threshold rising edge, using lower threshold

PS2000A_FALLING threshold falling edge, using upper threshold

PS2000A_FALLING_LOWER threshold falling edge, using lower threshold

PS2000A_RISING_OR_FALLING threshold either edge

PS2000A_INSIDE window-qualified inside window

PS2000A_OUTSIDE window-qualified outside window

PS2000A_ENTER window entering the window

PS2000A_EXIT window leaving the window

PS2000A_ENTER_OR_EXIT window entering or leaving the window

PS2000A_NONE none none

PicoScope 2000 Series (A API) Programmer's Guide 99

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.59 ps2000aSetTriggerChannelProperties() – set up
trigger thresholds

PICO_STATUS ps2000aSetTriggerChannelProperties

(

int16_t handle,

PS2000A_TRIGGER_CHANNEL_PROPERTIES * channelProperties,

int16_t nChannelProperties,

int16_t auxOutputEnable,

int32_t autoTriggerMilliseconds

)

This function is used to enable or disable triggering on the analog channels and set its parameters.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

channelProperties, a pointer to an array of PS2000A_TRIGGER_CHANNEL_PROPERTIES structures
describing the requested properties. The array can contain a single element describing the properties of one

channel or a number of elements describing several channels. If NULL is passed, triggering on analog
channels is switched off.

nChannelProperties, the length of the channelProperties array. If zero, triggering on analog
channels is switched off.

auxOutputEnable, not used.

autoTriggerMilliseconds, the number of milliseconds for which the scope device will wait for a
trigger before timing out. If this argument is set to zero, the scope device will wait indefinitely for a trigger. In
block mode, the capture cannot finish until a trigger event or auto-trigger timeout has occurred. In streaming

mode the device always starts collecting data as soon as ps2000aRunStreaming() is called but does not
start counting post-trigger samples until it detects a trigger event or auto-trigger timeout.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_TRIGGER_ERROR

PICO_MEMORY

PICO_INVALID_TRIGGER_PROPERTY

PICO_DRIVER_FUNCTION

PICO_INVALID_PARAMETER

API functions100

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.59.1 PS2000A_TRIGGER_CHANNEL_PROPERTIES structure

A structure of this type is passed to ps2000aSetTriggerChannelProperties() in the

channelProperties argument to specify the trigger mechanism, and is defined as follows:

typedef struct tPS2000ATriggerChannelProperties

{

int16_t thresholdUpper;

uint16_t thresholdUpperHysteresis;

int16_t thresholdLower;

uint16_t thresholdLowerHysteresis;

PS2000A_CHANNEL channel;

PS2000A_THRESHOLD_MODE thresholdMode;

} PS2000A_TRIGGER_CHANNEL_PROPERTIES

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

Upper and lower thresholds
The digital triggering hardware in your PicoScope has two independent trigger thresholds called upper and
lower. For some trigger types you can freely choose which threshold to use. The table in

ps2000aSetTriggerChannelDirections() shows which thresholds are available for use with which
trigger types. Dual thresholds are used for pulse-width triggering, when one threshold applies to the level
trigger and the other to the pulse-width qualifier; and for window triggering, when the two thresholds define
the upper and lower limits of the window.

Each threshold has its own trigger and hysteresis settings.

Hysteresis
Each trigger threshold (upper and lower) has an accompanying parameter called hysteresis. This defines a
second threshold at a small offset from the main threshold. The trigger fires when the signal crosses the
trigger threshold, but will not fire again until the signal has crossed the hysteresis threshold and then
returned to cross the trigger threshold. The double-threshold mechanism prevents noise on the signal from
causing unwanted trigger events.

For a rising-edge trigger the hysteresis threshold is below the trigger threshold. After one trigger event, the
signal must fall below the hysteresis threshold before the trigger is enabled for the next event. Conversely,
for a falling-edge trigger, the hysteresis threshold is always above the trigger threshold. After a trigger event,
the signal must rise above the hysteresis threshold before the trigger is enabled for the next event.

Hysteresis – The trigger fires at
A as the signal rises past the
trigger threshold. It does not fire
at B because the signal has not
yet dipped below the hysteresis
threshold. The trigger fires again
at C after the signal has dipped
below the hysteresis threshold
and risen again past the trigger
threshold.

PicoScope 2000 Series (A API) Programmer's Guide 101

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

Elements

thresholdUpper, the upper threshold at which the trigger fires. This is scaled in 16-bit ADC counts at the
currently selected range for that channel.

thresholdUpperHysteresis, the distance between the upper trigger threshold and the upper hysteresis
threshold, scaled in 16-bit counts.

thresholdLower, thresholdLowerHysteresis, the settings for the lower threshold: see

thresholdUpper and thresholdUpperHysteresis.

channel, the channel to which the properties apply. This can be one of the four input channels listed

under ps2000aSetChannel(), or PS2000A_TRIGGER_EXT for the EXT input fitted to some models.

thresholdMode, either a level or window trigger. Use one of these constants:

PS2000A_LEVEL

PS2000A_WINDOW

API functions102

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.60 ps2000aSetTriggerDelay() – set up post-trigger
delay

PICO_STATUS ps2000aSetTriggerDelay

(

int16_t handle,

uint32_t delay

)

This function sets the post-trigger delay, which causes capture to start a defined time after the trigger event.

Applicability All modes (but delay is ignored in streaming mode)

Arguments

handle, device identifier returned by ps2000aOpenUnit().

delay, the time between the trigger occurring and the first sample. For example, if delay=100 then the
scope would wait 100 sample periods before sampling. At a timebase of 1 GS/s, or 1 ns per sample, the
total delay would then be 100 x 1 ns = 100 ns.

Range: 0 to MAX_DELAY_COUNT.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 103

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.61 ps2000aSetTriggerDigitalPortProperties() – set up
digital channel trigger directions

PICO_STATUS ps2000aSetTriggerDigitalPortProperties

(

int16_t handle,

PS2000A_DIGITAL_CHANNEL_DIRECTIONS * directions,

int16_t nDirections

)

This function sets trigger directions for one or more digital channels.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

* directions, a pointer to an array of PS2000A_DIGITAL_CHANNEL_DIRECTIONS structures
describing the requested properties. The array can contain a single element describing the properties of one

channel, or a number of elements describing several digital channels. If directions is NULL, triggering on
digital inputs is switched off. A digital channel that is not included in the array is set to

PS2000A_DIGITAL_DONT_CARE.

nDirections, the number of digital channel directions being passed to the driver.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PICO_INVALID_DIGITAL_CHANNEL

PICO_INVALID_DIGITAL_TRIGGER_DIRECTION

API functions104

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.61.1 PS2000A_DIGITAL_CHANNEL_DIRECTIONS structure

A structure of this type is passed to ps2000aSetTriggerDigitalPortProperties() in the

directions argument to specify the trigger mechanism, and is defined as follows:

pragma pack(1)

typedef struct tPS2000ADigitalChannelDirections

{

 PS2000A_DIGITAL_CHANNEL channel;

 PS2000A_DIGITAL_DIRECTION direction;

} PS2000A_DIGITAL_CHANNEL_DIRECTIONS;

#pragma pack()

typedef enum enPS2000ADigitalChannel

{

 PS2000A_DIGITAL_CHANNEL_0,

 PS2000A_DIGITAL_CHANNEL_1,

 PS2000A_DIGITAL_CHANNEL_2,

 PS2000A_DIGITAL_CHANNEL_3,

 PS2000A_DIGITAL_CHANNEL_4,

 PS2000A_DIGITAL_CHANNEL_5,

 PS2000A_DIGITAL_CHANNEL_6,

 PS2000A_DIGITAL_CHANNEL_7,

 PS2000A_DIGITAL_CHANNEL_8,

 PS2000A_DIGITAL_CHANNEL_9,

 PS2000A_DIGITAL_CHANNEL_10,

 PS2000A_DIGITAL_CHANNEL_11,

 PS2000A_DIGITAL_CHANNEL_12,

 PS2000A_DIGITAL_CHANNEL_13,

 PS2000A_DIGITAL_CHANNEL_14,

 PS2000A_DIGITAL_CHANNEL_15,

 PS2000A_DIGITAL_CHANNEL_16,

 PS2000A_DIGITAL_CHANNEL_17,

 PS2000A_DIGITAL_CHANNEL_18,

 PS2000A_DIGITAL_CHANNEL_19,

 PS2000A_DIGITAL_CHANNEL_20,

 PS2000A_DIGITAL_CHANNEL_21,

 PS2000A_DIGITAL_CHANNEL_22,

 PS2000A_DIGITAL_CHANNEL_23,

 PS2000A_DIGITAL_CHANNEL_24,

 PS2000A_DIGITAL_CHANNEL_25,

 PS2000A_DIGITAL_CHANNEL_26,

 PS2000A_DIGITAL_CHANNEL_27,

 PS2000A_DIGITAL_CHANNEL_28,

 PS2000A_DIGITAL_CHANNEL_29,

 PS2000A_DIGITAL_CHANNEL_30,

 PS2000A_DIGITAL_CHANNEL_31,

 PS2000A_MAX_DIGITAL_CHANNELS

} PS2000A_DIGITAL_CHANNEL;

PicoScope 2000 Series (A API) Programmer's Guide 105

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

typedef enum enPS2000ADigitalDirection

{

 PS2000A_DIGITAL_DONT_CARE,

 PS2000A_DIGITAL_DIRECTION_LOW,

 PS2000A_DIGITAL_DIRECTION_HIGH,

 PS2000A_DIGITAL_DIRECTION_RISING,

 PS2000A_DIGITAL_DIRECTION_FALLING,

 PS2000A_DIGITAL_DIRECTION_RISING_OR_FALLING,

 PS2000A_DIGITAL_MAX_DIRECTION

} PS2000A_DIGITAL_DIRECTION;

The structure is byte-aligned. In C++, for example, you should specify this using the #pragma pack()
instruction.

API functions106

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.62 ps2000aSigGenArbitraryMinMaxValues() – query
AWG parameter limits

PICO_STATUS ps2000aSigGenArbitraryMinMaxValues

(

int16_t handle,

int16_t * minArbitraryWaveformValue,

int16_t * maxArbitraryWaveformValue,

uint32_t * minArbitraryWaveformSize,

uint32_t * maxArbitraryWaveformSize

)

This function returns the range of possible sample values and waveform buffer sizes that can be supplied to

ps2000aSetSigGenArbitrary() for setting up the arbitrary waveform generator (AWG). These values
may vary between models.

Applicability All models with AWG

Arguments

handle, device identifier returned by ps2000aOpenUnit().

minArbitraryWaveformValue, on exit, the lowest sample value allowed in the arbitraryWaveform

buffer supplied to ps2000aSetSigGenArbitrary().

maxArbitraryWaveformValue, on exit, the highest sample value allowed in the arbitraryWaveform

buffer supplied to ps2000aSetSigGenArbitrary().

minArbitraryWaveformSize, on exit, the minimum value allowed for the arbitraryWaveformSize

argument supplied to ps2000aSetSigGenArbitrary().

maxArbitraryWaveformSize, on exit, the maximum value allowed for the arbitraryWaveformSize

argument supplied to ps2000aSetSigGenArbitrary().

Returns PICO_OK

PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an arbitrary
waveform generator

PICO_NULL_PARAMETER, if all the parameter pointers are NULL

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

PicoScope 2000 Series (A API) Programmer's Guide 107

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.63 ps2000aSigGenFrequencyToPhase() – calculate
AWG phase from frequency

PICO_STATUS ps2000aSigGenFrequencyToPhase

(

int16_t handle,

double frequency,

PS2000A_INDEX_MODE indexMode,

uint32_t bufferLength,

uint32_t * phase

)

This function converts a frequency to a phase count for use with the arbitrary waveform generator setup

functions ps2000aSetSigGenArbitrary() and ps2000aSetSigGenPropertiesArbitrary(). The
value returned depends on the length of the buffer, the index mode passed and the device model.

Applicability All models with AWG

Arguments

handle, device identifier returned by ps2000aOpenUnit().

frequency, the required AWG output frequency.

indexMode, see ps2000aSetSigGenArbitrary().

bufferLength, the number of samples in the AWG buffer.

phase, on exit, the deltaPhase argument to be sent to the AWG setup function.

Returns PICO_OK

PICO_NOT_SUPPORTED_BY_THIS_DEVICE, if the device does not have an AWG

PICO_SIGGEN_FREQUENCY_OUT_OF_RANGE, if the frequency is out of range

PICO_NULL_PARAMETER, if phase is a NULL pointer

PICO_SIG_GEN_PARAM, if indexMode or bufferLength is out of range

PICO_INVALID_HANDLE

PICO_DRIVER_FUNCTION

API functions108

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.64 ps2000aSigGenSoftwareControl() – trigger the
signal generator

PICO_STATUS ps2000aSigGenSoftwareControl

(

int16_t handle,

int16_t state

)

This function causes a trigger event, or starts and stops gating, for the signal generator. Use it as follows:

1. Call ps2000aSetSigGenBuiltIn() or ps2000aSetSigGenArbitrary() to set up the signal

generator, setting the triggerSource argument to PS2000A_SIGGEN_SOFT_TRIG.

2. (a) If you set the signal generator triggerType to edge triggering (PS2000A_SIGGEN_RISING or

PS2000A_SIGGEN_FALLING), call ps2000aSigGenSoftwareControl() once to trigger the signal
generator.

(b) If you set the signal generator triggerType to gated-low triggering

(PS2000A_SIGGEN_GATE_LOW), call ps2000aSigGenSoftwareControl() with state=0 to start the

sweep and then again with state=1 to stop it.

(c) If you set the signal generator triggerType to gated-high triggering

(PS2000A_SIGGEN_GATE_HIGH), call ps2000aSigGenSoftwareControl() with state=1 to start

the sweep and then again with state=0 to stop it.

Generating continuous output runs

· If shots is set to PS2000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN in

ps2000aSetSigGenBuiltIn() or ps2000aSetSigGenArbitrary(), and triggerType to

PS2000A_SIGGEN_GATE_HIGH, then state=1 will cause the signal generator to output, while state=0
will cause it to stop.

· If shots is set to PS2000A_SHOT_SWEEP_TRIGGER_CONTINUOUS_RUN in

ps2000aSetSigGenBuiltIn() or ps2000aSetSigGenArbitrary() and trigType is set to

PS2000A_SIGGEN_GATE_LOW, the signal generator starts to output immediately. Setting state=1 will
cause it to stop.

· Trying to set a specific number of shots and then attempting to use a gate will cause the call to

ps2000aSetSigGenBuiltIn() or ps2000aSetSigGenArbitrary() to return an error.

Applicability Use with ps2000aSetSigGenArbitrary() or ps2000aSetSigGenBuiltIn().

Arguments

handle, device identifier returned by ps2000aOpenUnit().

state, specifies whether to start or stop the sweep (see note 2 above). Effective only when the signal

generator triggerType is set to PS2000A_SIGGEN_GATE_HIGH or PS2000A_SIGGEN_GATE_LOW.
Ignored for other trigger types.

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_NO_SIGNAL_GENERATOR

PICO_SIGGEN_TRIGGER_SOURCE

PICO_DRIVER_FUNCTION

PICO_NOT_RESPONDING

PicoScope 2000 Series (A API) Programmer's Guide 109

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.65 ps2000aStop() – stop data capture

PICO_STATUS ps2000aStop

(

int16_t handle

)

This function stops the scope device while it is waiting for a trigger or capturing data.

· In block mode, you can optionally call ps2000aStop() to terminate the current capture. Any data in the
buffer will be invalid.

· In rapid block mode, you can optionally call ps2000aStop() to terminate the sequence of captures. Any
completed captures will contain valid data but no further captures will be made.

· In streaming mode, calling ps2000aStop() is the usual way to terminate data capture. If this function is
called before a trigger event occurs, the oscilloscope may not contain valid data. If capture has already
started, the buffer will contain valid data.

Applicability All modes

Arguments

handle, device identifier returned by ps2000aOpenUnit().

Returns PICO_OK

PICO_INVALID_HANDLE

PICO_USER_CALLBACK

PICO_DRIVER_FUNCTION

API functions110

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

3.66 ps2000aStreamingReady() – find out if
streaming-mode data ready

typedef void (CALLBACK *ps2000aStreamingReady)

(

int16_t handle,

int32_t noOfSamples,

uint32_t startIndex,

int16_t overflow,

uint32_t triggerAt,

int16_t triggered,

int16_t autoStop,

void * pParameter

)

This callback function is part of your application. You register it with the driver using

ps2000aGetStreamingLatestValues(), and the driver calls it back when streaming-mode data is

ready. You can then download the data using the ps2000aGetValuesAsync() function.

The function should do nothing more than copy the data to another buffer within your application. To
maintain the best application performance, the function should return as quickly as possible without
attempting to process or display the data.

Applicability Streaming mode only

Arguments

handle, device identifier returned by ps2000aOpenUnit().

noOfSamples, the number of samples to collect.

startIndex, an index to the first valid sample in the buffer. This is the buffer that was previously passed

to ps2000aSetDataBuffer().

overflow, returns a set of flags that indicate whether an overvoltage has occurred on any of the
channels. It is a bit pattern with bit 0 corresponding to Channel A.

triggerAt, an index to the buffer indicating the location of the trigger point relative to startIndex. The

trigger point is therefore at StartIndex + triggerAt. This parameter is valid only when triggered is
non-zero.

triggered, a flag indicating whether a trigger occurred. If non-zero, a trigger occurred at the location

indicated by triggerAt.

autoStop, the flag that was set in the call to ps2000aRunStreaming().

* pParameter, a void pointer passed from ps2000aGetStreamingLatestValues(). The callback
function can write to this location to send any data, such as a status flag, back to the application.

Returns nothing

PicoScope 2000 Series (A API) Programmer's Guide 111

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

3.67 Wrapper functions
The Software Development Kits (SDKs) for PicoScope devices contain wrapper dynamic link library (DLL)

files in the lib subdirectory of your SDK installation for 32-bit and 64-bit systems. The wrapper functions
provided by the wrapper DLLs are for use with programming languages such as MathWorks MATLAB,
National Instruments LabVIEW and Microsoft Excel VBA that do not support features of the C programming
language such as callback functions.

The source code contained in the Wrapper projects contains a description of the functions and the input
and output parameters.

Below we explain the sequence of calls required to capture data in streaming mode using the wrapper API
functions.

The ps2000aWrap.dll wrapper DLL has a callback function for streaming data collection that copies data
from the driver buffer specified to a temporary application buffer of the same size. To do this it must be
registered with the wrapper and the channel must be specified as being enabled. You should process the
data in the temporary application buffer accordingly, for example by copying the data into a large array.

Procedure:

1. Open the oscilloscope using ps2000aOpenUnit().

1a. Inform the wrapper of the number of channels on the device by calling setChannelCount.

2. Select channels, ranges and AC/DC coupling using ps2000aSetChannel().

2a. Inform the wrapper which channels have been enabled by calling setEnabledChannels.

3. [MSOs only] Set the digital port using ps2000aSetDigitalPort().

3a. [MSOs only] Inform the wrapper which digital ports have been enabled by calling

setEnabledDigitalPorts.

4. Use the appropriate trigger setup functions. For programming languages that do not support structures,
use the wrapper's advanced trigger setup functions.

5. [MSOs only] Use the trigger setup function ps2000aSetTriggerDigitalPortProperties() to set
up the digital trigger if required.

6. Call ps2000aSetDataBuffer() (or for aggregated data collection ps2000aSetDataBuffers()) to
tell the driver where your data buffer(s) is(are).

6a. Register the data buffer(s) with the wrapper and set the application buffer(s) into which the data will be
copied.

For analog channels: Call setAppAndDriverBuffers (or setMaxMinAppAndDriverBuffers for
aggregated data collection).

[MSOs Only] For digital ports: Call setAppAndDriverDigiBuffers (or

setMaxMinAppAndDriverDigiBuffers for aggregated data collection).

7. Start the oscilloscope running using ps2000aRunStreaming().

8. Loop and call GetStreamingLatestValues and IsReady to get data and flag when the wrapper is
ready for data to be retrieved.

API functions112

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

8a. Call the wrapper’s AvailableData function to obtain information on the number of samples collected
and the start index in the buffer.

8b. Call the wrapper’s IsTriggerReady function for information on whether a trigger has occurred and
the trigger index relative to the start index in the buffer.

9. Process data returned to your application data buffers.

10. Call AutoStopped if the autoStop parameter has been set to TRUE in the call to

ps2000aRunStreaming().

11. Repeat steps 8 to 10 until AutoStopped returns true or you wish to stop data collection.

12. Call ps2000aStop, even if the autoStop parameter was set to TRUE.

13. To disconnect a device, call ps2000aCloseUnit().

PicoScope 2000 Series (A API) Programmer's Guide 113

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

4 Further information

4.1 Driver status codes

Every function in the ps2000a driver returns a driver status code from the list of PICO_STATUS values in

PicoStatus.h, which is included in the inc folder of the PicoSDK installation.

4.2 Enumerated types and constants

Enumerated types and constants are defined in ps2000aApi.h, which is included in the SDK under the inc
folder. We recommend that you refer to these constants by name unless your programming language allows
only numerical values.

4.3 Numeric data types
Here is a list of the numeric data types used in the PicoScope 2000 Series A API:

Type Bits Signed or unsigned?

int8_t 8 signed

int16_t 16 signed

uint16_t 16 unsigned

enum 32 enumerated

int32_t 32 signed

uint32_t 32 unsigned

float 32 signed (IEEE 754 binary32)

double 64 signed (IEEE 754 binary64)

int64_t 64 signed

uint64_t 64 unsigned

Glossary114

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

5 Glossary

AC/DC control. Each channel can be set to either AC coupling or DC coupling. With DC coupling, the voltage
displayed on the screen is equal to the true voltage of the signal. With AC coupling, any DC component of
the signal is filtered out, leaving only the variations in the signal (the AC component).

Aggregation. This is the data-reduction method used by the PicoScope 2000 Series (A API) scopes. For
each block of consecutive samples, the scope transmits only the minimum and maximum samples over the
USB port to the PC. In streaming mode you can set the number of samples in each block, called the

downsampling ratio, when you call ps2000aRunStreaming() for real-time capture, and when you call

ps2000aGetStreamingLatestValues() to obtain post-processed data. In block mode you can specify

the downsampling ratio when calling ps2000aGetValues(). In rapid block mode you can specify the ratio

when calling ps2000aGetValuesBulk().

Block mode. A sampling mode in which the computer prompts the oscilloscope to collect a block of data
into its internal memory before stopping the oscilloscope and transferring the whole block into computer
memory. This mode of operation is effective when the input signal being sampled contains high
frequencies. Note: To avoid aliasing effects, the maximum input frequency must be less than half the
sampling rate.

Buffer size. The size, in samples, of the oscilloscope buffer memory. The buffer memory is used by the
oscilloscope to temporarily store data before transferring it to the PC.

ETS. Equivalent Time Sampling. ETS constructs a picture of a repetitive signal by accumulating information
over many similar wave cycles. This means the oscilloscope can capture fast-repeating signals that have a
higher frequency than the maximum sampling rate. Note: ETS cannot be used for one-shot or non-repetitive
signals.

External trigger. This is the BNC socket marked EXT on some PicoScope oscilloscopes. A pulse fed into this
input can be used to start data capture.

Maximum sampling rate. A figure indicating the maximum number of samples the oscilloscope is capable
of acquiring per second. Maximum sample rates are given in MS/s (megasamples per second) or GS/s
(gigasamples per second). The higher the sampling capability of the oscilloscope, the more accurate the
representation of the high frequencies in a fast signal.

MSO (mixed-signal oscilloscope). An oscilloscope that has both analog and digital inputs.

Signal generator. This is a feature of some oscilloscopes that can generate a signal for test purposes. The
signal generator output is the BNC socket marked AWG or GEN on the oscilloscope. If you connect a BNC
cable between this and one of the channel inputs, you can send a signal into one of the channels. It can
generate a sine, square, triangle or arbitrary wave of fixed or swept frequency.

Streaming mode. A sampling mode in which the oscilloscope samples data and returns it to the computer in
an unbroken stream. This mode of operation is effective when the input signal being sampled contains only
low frequencies.

Timebase. A function within the PicoScope device that controls the time between samples. This time is
programmable.

USB 1.1. An early version of the Universal Serial Bus standard found on older PCs. Although your PicoScope
will work with a USB 1.1 port, it will operate much more slowly than with a USB 2.0 or 3.0 port.

USB 2.0. Universal Serial Bus (High Speed). A standard port used to connect external devices to PCs. The
high-speed data connection provided by a USB 2.0 port enables your PicoScope to achieve its maximum
performance.

PicoScope 2000 Series (A API) Programmer's Guide 115

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

USB 3.0. A faster version of the Universal Serial Bus standard. Your PicoScope is fully compatible with USB
3.0 ports and will operate with the same performance as on a USB 2.0 port.

Vertical resolution. A value, in bits, indicating the degree of precision with which the oscilloscope can turn
input voltages into digital values.

Voltage range. The voltage range is the difference between the maximum and minimum voltages that can
be accurately captured by the oscilloscope.

PicoScope 2000 Series (A API) Programmer's Guide 117

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

Index

A
Access 3

ADC count 57, 59

Aggregation 19

Analog offset 29, 70

Arbitrary waveform generator 84, 87

B
Bandwidth limiter 70

Block mode 7, 8, 9, 10, 114

asynchronous call 11

callback 24

polling status 55

running 66

Buffer size 114

C
Callback 8, 17

block mode 24

for data 26

streaming mode 110

Channels

enabling 70

settings 70

Closing units 25

Communication 64

Connection 64

Constants 113

Copyright 3

Coupling 114

Coupling type, setting 70

D
Data acquisition 19

Data buffers

declaring 71

declaring, aggregation mode 72

Data retention 9

deltaPhase argument (AWG) 88

Digital inputs

connector 23

data format 6

ports 0 and 1 6

Downsampling 9, 43

maximum ratio 31

modes 44

Driver 4

status codes 113

E
Enabling channels 70

Enumerated types 113

Enumerating oscilloscopes 27

ETS

mode 8

overview 17

setting time buffers 76, 77

setting up 75

using 18

F
Fitness for purpose 3

Functions

list of 24

ps2000aBlockReady 24

ps2000aCloseUnit 25

ps2000aDataReady 26

ps2000aEnumerateUnits 27

ps2000aFlashLed 28

ps2000aGetAnalogueOffset 29

ps2000aGetChannelInformation 30

ps2000aGetMaxDownSampleRatio 31

ps2000aGetMaxSegments 32

ps2000aGetNoOfCaptures 33, 34

ps2000aGetStreamingLatestValues 35

ps2000aGetTimebase 22, 36

ps2000aGetTimebase2 38

ps2000aGetTriggerTimeOffset 39

ps2000aGetTriggerTimeOffset64 40

ps2000aGetUnitInfo 41

ps2000aGetValues 11, 43

ps2000aGetValuesAsync 11, 46

ps2000aGetValuesBulk 47

ps2000aGetValuesOverlapped 48

ps2000aGetValuesOverlappedBulk 50

ps2000aGetValuesTriggerTimeOffsetBulk 51

ps2000aGetValuesTriggerTimeOffsetBulk64 53, 54

ps2000aIsReady 55

ps2000aIsTriggerOrPulseWidthQualifierEnabled 56

ps2000aMaximumValue 5, 57

ps2000aMemorySegments 58

ps2000aMinimumValue 5, 59

ps2000aNoOfStreamingValues 60

ps2000aOpenUnit 61

ps2000aOpenUnitAsync 62

Index118

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.ps2000apg.en r11

Functions

ps2000aOpenUnitProgress 63

ps2000aPingUnit 64

ps2000aQueryOutputEdgeDetect 65

ps2000aRunBlock 66

ps2000aRunStreaming 68

ps2000aSetChannel 5, 70

ps2000aSetDataBuffer 71

ps2000aSetDataBuffers 72

ps2000aSetDigitalAnalogTriggerOperand 73

ps2000aSetEts 17, 75

ps2000aSetEtsTimeBuffer 76

ps2000aSetEtsTimeBuffers 77

ps2000aSetNoOfCaptures 78

ps2000aSetOutputEdgeDetect 79

ps2000aSetPulseWidthDigitalPortProperties 80

ps2000aSetPulseWidthQualifier 81

ps2000aSetSigGenArbitrary 84

ps2000aSetSigGenBuiltIn 89

ps2000aSetSigGenBuiltInV2 92

ps2000aSetSigGenPropertiesArbitrary 93

ps2000aSetSigGenPropertiesBuiltIn 94

ps2000aSetSimpleTrigger 7, 95

ps2000aSetTriggerChannelConditions 7, 96

ps2000aSetTriggerChannelDirections 7, 98

ps2000aSetTriggerChannelProperties 7, 99

ps2000aSetTriggerDelay 102

ps2000aSetTriggerDigitalPortProperties 103

ps2000aSigGenSoftwareControl 108

ps2000aStop 11, 109

ps2000aStreamingReady 110

H
Hysteresis 100, 104

I
Index modes

dual 87

single 87

Information, reading from units 41

Input range, selecting 70

Intended use 1

L
LED

flashing 28

Legal information 3

Liability 3

M
Memory buffer 9

Memory segmentation 9, 10, 19, 58

Mission-critical applications 3

MSO digital connector 23

Multi-unit operation 23

N
Numeric data types 113

O
One-shot signals 17

Opening a unit 61

checking progress 63

without blocking 62

Oversampling 44

P
PC Oscilloscope 1, 114

PC requirements 2

PICO_STATUS enum type 113

PicoScope 2000 Series 1

PicoScope software 1, 4, 113

Programming

general procedure 4

ps2000a.dll 4

PS2000A_CONDITION_ constants 83, 97

PS2000A_LEVEL constant 100, 104

PS2000A_PWQ_CONDITIONS structure 83

PS2000A_RATIO_MODE_AGGREGATE 44

PS2000A_RATIO_MODE_AVERAGE 44

PS2000A_RATIO_MODE_DECIMATE 44

PS2000A_TIME_UNITS constant 39, 40

PS2000A_TRIGGER_CHANNEL_PROPERTIES structure

100, 104

PS2000A_TRIGGER_CONDITIONS 96

PS2000A_TRIGGER_CONDITIONS structure 97

PS2000A_WINDOW constant 100, 104

ps2000aSigGenArbitraryMinMaxValues 106

ps2000aSigGenFrequencyToPhase 107

Pulse-width qualifier 81

conditions 83

status 56

R
Ranges 30

Rapid block mode 8, 12, 33, 34

aggregation 15

PicoScope 2000 Series (A API) Programmer's Guide 119

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved. ps2000apg.en r11

Rapid block mode 8, 12, 33, 34

no aggregation 13

setting number of captures 78

Resolution, vertical 114

Retrieving data 43, 46

block mode, deferred 48

rapid block mode 47

rapid block mode, deferred 50

stored 21

streaming mode 35

Retrieving times

rapid block mode 51, 53, 54

S
Sampling rate 114

maximum 9

Scaling 5

Serial numbers 27

Setup time 9

Signal generator

arbitrary waveforms 84

built-in waveforms 89, 92

software trigger 108

Status codes 113

Stopping sampling 109

Streaming mode 8, 19, 114

callback 110

getting number of samples 60

retrieving data 35

running 68

using 20

Support 3

T
Time buffers

setting for ETS 76, 77

Timebase 22, 114

calculating 36, 38

Trademarks 3

Trigger

channel properties 80, 99, 103

combining analog and digital 73

conditions 96, 97

delay 102

digital port pulse width 80

digital ports 103

directions 98

edge detection, querying 65

edge detection, setting 79

external 5

pulse-width qualifier 81

pulse-width qualifier conditions 83

setting up 95

stability 17

status 56

threshold 7

time offset 39, 40

U
Upgrades 3

Usage 3

USB 1, 2, 114

hub 23

V
Viruses 3

Voltage range 5, 114

selecting 70

W
WinUsb.sys 4

Wrapper functions 111

Pico Technology
James House
Colmworth Business Park
St. Neots
Cambridgeshire
PE19 8YP
United Kingdom

Copyright © 2011–2019 Pico Technology Ltd. All rights reserved.

ps2000apg.en r11 2019-09-13

Pico Technology
320 N Glenwood Blvd
Tyler
Texas 75702
United States

Pico Technology
Room 2252, 22/F, Centro
568 Hengfeng Road
Zhabei District
Shanghai 200070
PR China

sales@picotech.com
support@picotech.com

pico.china@picotech.com

Asia-Pacific regional office:

Tel: +44 (0) 1480 396 395

United States regional
office:

United Kingdom global
headquarters:

Tel: +1 800 591 2796 Tel: +86 21 2226-5152

www.picotech.com

sales@picotech.com
support@picotech.com

	Introduction
	Overview
	PC requirements
	Legal information

	Concepts
	Driver
	General procedure
	Voltage ranges
	MSO digital data
	Triggering
	Sampling modes
	Block mode
	Using block mode
	Asynchronous calls in block mode

	Rapid block mode
	Using rapid block mode
	Rapid block mode example 1: no aggregation
	Rapid block mode example 2: using aggregation

	ETS (Equivalent Time Sampling)
	Using ETS mode

	Streaming mode
	Using streaming mode

	Retrieving stored data

	Timebases
	MSO digital connector
	Combining oscilloscopes

	API functions
	ps2000aBlockReady() – find out if block-mode data ready
	ps2000aCloseUnit() – close a scope device
	ps2000aDataReady() – find out if post-collection data ready
	ps2000aEnumerateUnits() – find all connected oscilloscopes
	ps2000aFlashLed() – flash the front-panel LED
	ps2000aGetAnalogueOffset() – get allowable offset range
	ps2000aGetChannelInformation() – get list of available ranges
	ps2000aGetMaxDownSampleRatio() – get aggregation ratio for data
	ps2000aGetMaxSegments() – find out how many segments allowed
	ps2000aGetNoOfCaptures() – get number of captures available
	ps2000aGetNoOfProcessedCaptures() – get number of captures processed
	ps2000aGetStreamingLatestValues() – get streaming data while scope is running
	ps2000aGetTimebase() – find out what timebases are available
	ps2000aGetTimebase2() – find out what timebases are available
	ps2000aGetTriggerTimeOffset() – find out when trigger occurred (32‑bit)
	ps2000aGetTriggerTimeOffset64() – find out when trigger occurred (64‑bit)
	ps2000aGetUnitInfo() – get information about scope device
	ps2000aGetValues() – get block-mode data with callback
	Downsampling modes

	ps2000aGetValuesAsync() – get streaming data with callback
	ps2000aGetValuesBulk() – get data in rapid block mode
	ps2000aGetValuesOverlapped() – set up data collection ahead of capture
	Using the GetValuesOverlapped functions

	ps2000aGetValuesOverlappedBulk() – set up data collection in rapid block mode
	ps2000aGetValuesTriggerTimeOffsetBulk() – get rapid-block waveform times (32‑bit)
	ps2000aGetValuesTriggerTimeOffsetBulk64() – get rapid-block waveform times (64‑bit)
	ps2000aHoldOff() – not supported
	ps2000aIsReady() – poll driver in block mode
	ps2000aIsTriggerOrPulseWidthQualifierEnabled() – get trigger status
	ps2000aMaximumValue() – get maximum ADC count in GetValues calls
	ps2000aMemorySegments() – divide scope memory into segments
	ps2000aMinimumValue() – get minimum ADC count in GetValues calls
	ps2000aNoOfStreamingValues() – get number of samples in streaming mode
	ps2000aOpenUnit() – open a scope device
	ps2000aOpenUnitAsync() – open a scope device without blocking
	ps2000aOpenUnitProgress() – check progress of OpenUnit call
	ps2000aPingUnit() – check communication with opened device
	ps2000aQueryOutputEdgeDetect() – find out if state trigger edge-detection is enabled
	ps2000aRunBlock() – capture in block mode
	ps2000aRunStreaming() – capture in streaming mode
	ps2000aSetChannel() – set up input channel
	ps2000aSetDataBuffer() – register data buffer with driver
	ps2000aSetDataBuffers() – register aggregated data buffers with driver
	ps2000aSetDigitalAnalogTriggerOperand() – set up combined analog/digital trigger
	ps2000aSetDigitalPort() – set up digital input
	ps2000aSetEts() – set up equivalent-time sampling
	ps2000aSetEtsTimeBuffer() – set up 64‑bit buffer for ETS timings
	ps2000aSetEtsTimeBuffers() – set up 32-bit buffers for ETS timings
	ps2000aSetNoOfCaptures() – set number of captures to collect in one run
	ps2000aSetOutputEdgeDetect() – enable or disable state trigger edge-detection
	ps2000aSetPulseWidthDigitalPortProperties() – set pulse-width triggering on digital inputs
	ps2000aSetPulseWidthQualifier() – set up pulse width triggering
	PS2000A_PWQ_CONDITIONS structure

	ps2000aSetSigGenArbitrary() – set up arbitrary waveform generator
	AWG index modes
	Calculating deltaPhase

	ps2000aSetSigGenBuiltIn() – set up standard signal generator
	ps2000aSetSigGenBuiltInV2() – double-precision signal generator setup
	ps2000aSetSigGenPropertiesArbitrary() – change AWG properties
	ps2000aSetSigGenPropertiesBuiltIn() – change standard signal generator properties
	ps2000aSetSimpleTrigger() – set up level triggers
	ps2000aSetTriggerChannelConditions() – specify which channels to trigger on
	PS2000A_TRIGGER_CONDITIONS structure

	ps2000aSetTriggerChannelDirections() – set up signal polarities for triggering
	ps2000aSetTriggerChannelProperties() – set up trigger thresholds
	PS2000A_TRIGGER_CHANNEL_PROPERTIES structure

	ps2000aSetTriggerDelay() – set up post-trigger delay
	ps2000aSetTriggerDigitalPortProperties() – set up digital channel trigger directions
	PS2000A_DIGITAL_CHANNEL_DIRECTIONS structure

	ps2000aSigGenArbitraryMinMaxValues() – query AWG parameter limits
	ps2000aSigGenFrequencyToPhase() – calculate AWG phase from frequency
	ps2000aSigGenSoftwareControl() – trigger the signal generator
	ps2000aStop() – stop data capture
	ps2000aStreamingReady() – find out if streaming-mode data ready
	Wrapper functions

	Further information
	Driver status codes
	Enumerated types and constants
	Numeric data types

	Glossary

